poj 2942 Knights of the Round Table 点双连通

圆桌骑士,记得小时候街机也有同名还蛮喜欢玩的游戏。


题意:有n个骑士经常举行圆桌会议,商讨大事~每次圆桌会议至少应有3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置。如果发生意见分歧,则需要举手表决,因此参加会议的骑士数目必须是奇数以防止赞同票和反对票一样多。知道了哪些骑士相互憎恨之后,你的任务是统计有多少个骑士不可能参加任何一个会议。(题意来自刘汝佳白书)


首先可以对不相互憎恨的骑士建边,然后找出所有的双连通分量,对于每一个双连通分量,只要有一个奇圈,连通分量李所有的人都可以参加了,这个自己画个图最直接了。


模板题,好好弄好图论基础!

#include <stdio.h>
#include <string.h>
#include <vector>
using namespace std;

#define pb push_back

const int maxn = 1005;
const int maxm = 1000005;
struct EDGE{
	int u, to, next, vis;
}edge[maxm<<1];

int head[maxn], hate[maxn][maxn], dfn[maxn], st[maxm], color[maxn], isodd[maxn], low[maxn];
int E, time, top, btot;

void newedge(int u, int to) {
	edge[E].to = to;
	edge[E].u = u;
	edge[E].vis = 0;
	edge[E].next = head[u];
	head[u] = E++;
}

int min(int a, int b) {
	return a > b ? b : a;
}

vector <int> block[maxn];

void dfs(int u) {
	dfn[u] = low[u] = ++time;
	for(int i = head[u];i != -1;i = edge[i].next) {
		if(edge[i].vis)	continue;
		edge[i].vis = edge[i^1].vis = 1;
		int to = edge[i].to;
		st[++top] = i;
		if(!dfn[to]) {
			dfs(to);
			low[u] = min(low[u], low[to]);
			if(low[to] >= dfn[u]) {
				btot++;
				block[btot].clear();
				do {
					int now = st[top--];
					block[btot].pb(now);
					to = edge[now].u;
				} while(to != u);
			}
		}
		else
			low[u] = min(low[u], low[to]);
	}
}

int flag;

void DFS(int u) {
	for(int i = head[u];i != -1;i = edge[i].next) {
		if(edge[i].vis)	continue;
		edge[i].vis = edge[i^1].vis = 1;
		int to = edge[i].to;
		if(!color[to]) {
			color[to] = 3 - color[u];
			DFS(to);
		}
		else if(color[u] == color[to])
			flag = 1;
	}
}

void init() {
	memset(head, -1, sizeof(head));
	memset(dfn, 0, sizeof(dfn));
	memset(hate, 0, sizeof(hate));
	memset(isodd, 0, sizeof(isodd));
	E = time = top = btot = 0;
}

int main() {
	int n, m, i, j, u, to;
	while(scanf("%d%d", &n, &m) != -1 && n) {
		init();
		for(i = 0;i < m; i++) {
			scanf("%d%d", &u, &to);
			hate[u][to] = hate[to][u] = 1;
		}
		for(i = 1;i <= n; i++) {
			for(j = i+1;j <= n; j++) if(!hate[i][j]) {
				newedge(i, j);
				newedge(j, i);
			}
		}
		for(i = 1;i <= n; i++) if(!dfn[i])
			dfs(i);
		for(i = 1;i <= btot; i++) {
			if(block[i].size() == 1)	continue;
			int now = block[i][0];
			u = edge[now].u;
			for(j = 0;j < block[i].size(); j++)
				edge[block[i][j]].vis = 0;
			memset(color, 0, sizeof(color));
			color[u] = 1;
			flag = 0;
			DFS(u);
			if(flag)
				for(j = 0;j < block[i].size(); j++) {
					now = block[i][j];
					isodd[edge[now].u] = isodd[edge[now].to] = 1;
				}
		}
		int ans = 0;
		for(i = 1;i <= n; i++) if(!isodd[i])	ans++;
		printf("%d\n", ans);
	}
	return 0;
}


你可能感兴趣的:(poj 2942 Knights of the Round Table 点双连通)