题目链接
题意:给定一个图,每个点有一个代价,边有一个代价,现在有q次询问,每次询问从u到v的最小花费,花费的计算方式为,路径代价加上路径上最大代价结点的代价
思路:枚举最大代价结点,然后做dijkstra,做的过程中忽略掉比枚举点更大代价的点,然后更新所有的答案,预处理完成后每次询问就可以在O(1)时间内完成了
代码:
#include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace std; const int MAXNODE = 85; const int MAXEDGE = 10005; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type dist; Edge() {} Edge(int u, int v, Type dist) { this->u = u; this->v = v; this->dist = dist; } }; struct HeapNode { Type d; int u; HeapNode() {} HeapNode(Type d, int u) { this->d = d; this->u = u; } bool operator < (const HeapNode& c) const { return d > c.d; } }; int n, m, q, cost[MAXNODE], ans[MAXNODE][MAXNODE]; struct Dijkstra { int n, m; Edge edges[MAXEDGE]; int first[MAXNODE]; int next[MAXEDGE]; bool done[MAXNODE]; Type d[MAXNODE]; int p[MAXNODE]; void init(int n) { this->n = n; memset(first, -1, sizeof(first)); m = 0; } void add_Edge(int u, int v, Type dist) { edges[m] = Edge(u, v, dist); next[m] = first[u]; first[u] = m++; } void dijkstra(int s) { priority_queue<HeapNode> Q; for (int i = 0; i < n; i++) d[i] = INF; d[s] = 0; p[s] = -1; memset(done, false, sizeof(done)); Q.push(HeapNode(0, s)); while (!Q.empty()) { HeapNode x = Q.top(); Q.pop(); int u = x.u; if (done[u]) continue; done[u] = true; for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (cost[e.v] > cost[s]) continue; if (d[e.v] > d[u] + e.dist) { d[e.v] = d[u] + e.dist; p[e.v] = i; Q.push(HeapNode(d[e.v], e.v)); } } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { ans[i][j] = min(ans[i][j], d[i] + d[j] + cost[s]); } } } } gao; int main() { int cas = 0; int bo = 0; while (~scanf("%d%d%d", &n, &m, &q) && n) { if (bo) printf("\n"); else bo = 1; gao.init(n); for (int i = 0; i < n; i++) scanf("%d", &cost[i]); int u, v, d; while (m--) { scanf("%d%d%d", &u, &v, &d); u--; v--; gao.add_Edge(u, v, d); gao.add_Edge(v, u, d); } memset(ans, INF, sizeof(ans)); for (int i = 0; i < n; i++) gao.dijkstra(i); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) if (ans[i][j] == INF) ans[i][j] = -1; printf("Case #%d\n", ++cas); while (q--) { scanf("%d%d", &u, &v); u--; v--; printf("%d\n", ans[u][v]); } } return 0; }