Description
Input
Output
Sample Input
1 2 3 4 5
Sample Output
4
思路:扩展欧几里得算法,设时间为t,最后在s点相遇,A走了a圈,B走了b圈,
那么我们可以推出: m*t + x = L * a + s; n*t + y = L * b + s,两式相减得:(m-n) * t + (b - a) * L = y - x,正好是扩展欧几里得的形式求两个可行解,那么对于求最小的解动脑子想想就得到了
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> typedef long long ll; using namespace std; ll gcd(ll a, ll b) { return b?gcd(b, a%b):a; } void exgcd(ll a, ll b, ll &x, ll &y) { if (b == 0) { x = 1; y = 0; return; } exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return; } int main() { ll x, y, n, m, l; while (scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &l) != EOF) { ll a = n-m, b = l, c = x-y, p, q; ll g = gcd(a, b); if (c % g) { printf("Impossible\n"); continue; } a /= g, b /= g, c /= g; exgcd(a, b, p, q); p *= c; ll t = p % b; while (t < 0) t += b; printf("%lld\n", t); } return 0; }