zoj 3816 Generalized Palindromic Number (根据对称性来搜)

Generalized Palindromic Number Time Limit: 2 Seconds      Memory Limit: 65536 KB

A number that will be the same when it is written forwards or backwards is known as a palindromic number. For example, 1234321 is a palindromic number.

We call a number generalized palindromic number, if after merging all the consecutive same digits, the resulting number is a palindromic number. For example, 122111 is a generalized palindromic number. Because after merging, 122111 turns into 121 which is a palindromic number.

Now you are given a positive integer N, please find the largest generalized palindromic number less than N.

Input

There are multiple test cases. The first line of input contains an integer T (about 5000) indicating the number of test cases. For each test case:

There is only one integer N (1 <= N <= 1018).

Output

For each test case, output the largest generalized palindromic number less than N.

Sample Input

4
12
123
1224
1122

Sample Output


11
12 1
122 1
1121


题意:
找一个小于n的最大的回文数(连续的相同的数合并之后是回文数)

思路:
比赛一直一维是数位dp,汗,一直不知道怎么写都不知道换思路,思维还是傻傻的。
因为只要找到最大的,所以还是蛮快可以搜出来的,要满足这个回文性质的话,方法是根据对称性来搜。
dfs(le,ri,limit); 左边放了多少个,右边放了多少个,是否有上界标志。
枚举左边这一位放什么(从大到小),再枚举右边和它匹配的长度,dfs下去就行了。
如果左边放i时有结果了,那么这个结果就是最大的了,不用再搜了。
处理小于n的方法是,更新答案时如果>=n的话就不用它更新。

代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define maxn 401
#define MAXN 200005
#define INF 0x3f3f3f3f
#define mod 1000000007
#define eps 1e-6
const double pi=acos(-1.0);
typedef long long ll;
using namespace std;

ll n,m,ans;
int tot,dig[20],le[20],ri[20];

ll get(int num1,int num2)
{
    int i;
    ll res=0;
    for(i=1;i<=num1;i++)
    {
        res=res*10+le[i];
    }
    for(i=num2;i>=1;i--)
    {
        res=res*10+ri[i];
    }
    return res;
}
ll dfs(int num1,int num2,int limit)
{
    ll t,res=0;
    if(num1+num2>tot)
    {
        res=get(num1-1,num2);
        if(res<m) return res;
        return 0;
    }
    int i,j,ed;
    ed=limit?dig[tot-num1+1]:9;
    for(i=ed;i>=0;i--)
    {
        le[num1]=i;
        if((num1==1||le[num1]!=le[num1-1])&&!(num1==1&&i==0)&&(num1+num2<tot))
        {
            for(j=1; num1+num2+j<=tot; j++) // r与之匹配的个数
            {
                ri[num2+j]=i;
                t=dfs(num1+1,num2+j,limit&&(i==ed));
                res=max(res,t);
            }
        }
        else
        {
            t=dfs(num1+1,num2,limit&&(i==ed));
            res=max(res,t);
        }
        if(res>0) return res;
    }
    return res;
}
void solve()
{
    int i,j;
    tot=0;
    m=n;
    while(n)
    {
        dig[++tot]=n%10;
        n/=10;
    }
    ans=dfs(1,0,1);
    printf("%lld\n",ans);
}
int main()
{
    int i,j,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld",&n);
        solve();
    }
    return 0;
}

你可能感兴趣的:(zoj 3816 Generalized Palindromic Number (根据对称性来搜))