bzoj 3675: [Apio2014]序列分割(斜率优化)

3675: [Apio2014]序列分割

Time Limit: 40 Sec   Memory Limit: 128 MB
Submit: 1662   Solved: 679
[ Submit][ Status][ Discuss]

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT



【样例说明】 

在样例中,小H可以通过如下3轮操作得到108分: 

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置 

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。 

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数 

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+ 

3)=36分。 

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个 

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)= 

20分。 

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。 

【数据规模与评分】 

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

Source

[ Submit][ Status][ Discuss] 

题解:斜率优化DP

貌似这道题最后的结果与分割的顺序无关,最终答案就等于每两段的乘积和

f[i][j]=f[i-1][k]+(sum[j]-sum[k])*sum[k]

#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<algorithm>  
#include<cmath>  
#define N 100003  
#define ll long long   
using namespace std;  
ll n,m,q[N],head,tail;  
ll sum[N],f[N],g[N];  
ll K(ll x)  
{  
    return sum[x];  
}  
ll B(ll x)  
{  
    return g[x]-sum[x]*sum[x];  
}  
ll calc(ll x,ll y)  
{  
    return (ll)K(x)*sum[y]+B(x);  
}  
bool pd(ll x1,ll x2,ll x3)  
{  
    ll w1=(K(x1)-K(x3))*(B(x2)-B(x1));  
    ll w2=(K(x1)-K(x2))*(B(x3)-B(x1));  
    return w1>=w2;  
}  
int main()  
{  
    scanf("%lld%lld",&n,&m);  
    for (ll i=1;i<=n;i++)  
     {  
        ll x; scanf("%lld",&x);  
        sum[i]=(ll)sum[i-1]+x;  
     }  
    for (ll j=1;j<=m;j++)  
     {  
        head=tail=0;  
        for (ll i=1;i<=n;i++)  
         {  
            while (head<tail&&calc(q[head],i)<=calc(q[head+1],i))  
             head++;  
            f[i]=calc(q[head],i);    
            while (head<tail&&pd(i,q[tail-1],q[tail]))  
             tail--;  
            tail++; q[tail]=i;  
         }  
        for (ll i=1;i<=n;i++)  
         g[i]=f[i];  
     }  
     printf("%lld\n",f[n]);  
}  


你可能感兴趣的:(bzoj 3675: [Apio2014]序列分割(斜率优化))