touring compute |
||
|
||
description |
||
The best friends Mr. Li and Mr. Liu are touring in beautiful country M.
M has n cities and m two-way roads in total. Each road connects two cities with fixed length.We assume that the cost of car traveling on the road is only related to the length of road,the longer road the more money to pay.
Now,both Mr. Li and Mr. Liu are in the city C,they have chosen to travel separately by the next time.
Mr. Li chooses city A with beautiful scenery to be next place, Mr. Liu goes to city B with ancient temples.
You are their friend with clever minds,just tell them how to arrive the target places make total costs of them minimum.
|
||
input |
||
The input file contains sevearl test cases.The first line of each case are two positive integers n,and m(3 <= n< =5000, 1 <=m <=10000). The cities are named from 1 to n.Three positive integers C, A, B are follwing.Then,m lines are given,each line contains three integers i,j and k,indicating one road between i and j is exists,and should pay cost k by the car.
Process to the end of file.
|
||
output |
||
For each test case, first print a line saying "Scenario #p", where p is the number of the test case.Then,if both Mr. Li and Mr. Liu can manage to arrive their cities,output the minimum cost they will spend,otherwise output "Can not reah!", in one line.Print a blank line after each test case, even after the last one.
|
||
sample_input |
||
4 5
1 3 4
1 2 100
1 3 200
1 4 300
2 3 50
2 4 100
4 6
1 3 4
1 2 100
1 3 200
1 4 300
2 3 50
2 4 100
3 4 50
|
||
sample_output |
||
Scenario #1
250
Scenario #2
200
|
||
hint |
||
|
||
source |
思路:对A,B,C三点分别来次最短路,答案就是MIn(dis[A][i]+dsi[B][i]+dis[C][i];)枚举所有的i
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int mm=5e3+9; const int nn=4e4+9; const int oo=1e9; int head[nn],next[nn],ver[nn],edge,q[mm],vis[mm]; long long dis[3][mm],cost[nn]; int n,m,C,A,B; void data() { memset(head,-1,sizeof(head)); edge=0; } void add(int u,int v,int c) { ver[edge]=v;cost[edge]=c;next[edge]=head[u];head[u]=edge++; ver[edge]=u;cost[edge]=c;next[edge]=head[v];head[v]=edge++; } void spfa(int s,long long*dis) { memset(vis,0,sizeof(vis)); for(int i=0;i<=n;++i) dis[i]=oo; dis[s]=0; int l=0,r=1,z,v; q[0]=s;vis[s]=1; while(l^r) { z=q[l++];l%=mm;vis[z]=0; for(int i=head[z];i>=0;i=next[i]) { v=ver[i]; if(dis[v]>dis[z]+cost[i]) { dis[v]=dis[z]+cost[i]; if(!vis[v]) vis[v]=1,q[r++]=v,r%=mm; } } } } void Min(long long&x,const long long y) { if(x>y)x=y; } int main() { int a,b,c;int cas=0; while(scanf("%d%d",&n,&m)!=EOF) { data(); scanf("%d%d%d",&C,&A,&B); for(int i=0;i<m;++i) { scanf("%d%d%d",&a,&b,&c); add(a,b,c); } spfa(C,dis[0]); spfa(A,dis[1]); spfa(B,dis[2]); long long ans=oo; for(int i=1;i<=n;++i) { Min(ans,dis[0][i]+dis[1][i]+dis[2][i]); } printf("Scenario #%d\n",++cas); if(ans!=oo) cout<<ans<<"\n\n"; else printf("Can not go reach!\n\n"); } }