POJ 3237 Tree 树链剖分

题意:链接

方法:树链剖分

解析:搞得要死要活的一道题-.-

好吧,一棵树,三种操作:

第一种是把某个边的值更改为x;

第二种是将x节点到y节点的路上所有的边的值变为原来的相反数

第三种询问x节点到y节点的路上的边的最大值。

注:定义每个点的值是其父节点到该点的边的权值

先说第一种操作,挺好搞的,因为加的是双向边,所以题中给的编号乘2加1就是找的这条边,再确定一下哪个点是要更改的点就好,然后直接单点更改。

第二种就是一个异或标记,也是挺正常的区间更改

注:线段树维护区间最值的话,就得搞个最大值最小值,然后更新的话就是相当于最大值变为了最小值的相反数,最小值变成了最大值的相反数。相当于把一条线段翻转。

询问操作没啥说的了,不写挂就ok:)

后记:哦天哪写这道题刚开始线段树单点修改忘更新,rp–,然后又是线段树维护的东西跟树节点编号混了一下,rp–,然后是链剖的更新的时候多更新了个父节点!!!!最后交题的时候忘删freopen!!我tm还看了半天,然后发现没删freopen,日了狗了!

代码:(附poj discuss中Ever_ljq的对拍程序)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
using namespace std ;
int t,n,tot;
int siz[N],dep[N],num[N],rnk[N];
int fa[N],son[N],tim[N],top[N],a[N];
int head[N],M[4*N],col[4*N],m[4*N];
char s[10];
struct node
{
    int to,next,val,from;
}edge[2*N];
int cnt ;
void init()
{
    memset(head,-1,sizeof(head));
    memset(son,-1,sizeof(son));
    memset(M,0,sizeof(M));
    memset(m,0,sizeof(m));
    cnt=1,tot=0;
}
void edgeadd(int from,int to,int val)
{
    edge[cnt].from=from,edge[cnt].to=to,edge[cnt].next=head[from],edge[cnt].val=val,head[from]=cnt++;
    edge[cnt].from=to,edge[cnt].to=from,edge[cnt].next=head[to],edge[cnt].val=val,head[to]=cnt++;
}
void dfs1(int u,int f,int d)
{
    siz[u]=1,dep[u]=d,fa[u]=f;
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int to=edge[i].to;
        if(to==f)continue;
        a[to]=edge[i].val;
        dfs1(to,u,d+1);
        siz[u]+=siz[to];
        if(son[u]==-1||siz[son[u]]<siz[to])son[u]=to;
    }
}
void dfs2(int u,int tp)
{
    tim[u]=++tot,num[tim[u]]=a[u],top[u]=tp;
    if(son[u]==-1)return;
    dfs2(son[u],tp);
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int to=edge[i].to;
        if(to==fa[u]||to==son[u])continue;
        dfs2(to,to);
    }
}
void pushup(int rt)
{
    M[rt]=max(M[rt<<1],M[rt<<1|1]);
    m[rt]=min(m[rt<<1],m[rt<<1|1]);
}
void pushdown(int rt)
{
    col[rt]=0;
    col[rt<<1]^=1,col[rt<<1|1]^=1;
    M[rt<<1]*=-1,M[rt<<1|1]*=-1;
    m[rt<<1]*=-1,m[rt<<1|1]*=-1;
    swap(M[rt<<1],m[rt<<1]);
    swap(M[rt<<1|1],m[rt<<1|1]);
}
void build(int l,int r,int rt)
{
    col[rt]=0;
    if(l==r)
    {
        M[rt]=m[rt]=num[l];
        return;
    } 
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
    pushup(rt);
}
void update(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        col[rt]^=1;
        M[rt]*=-1,m[rt]*=-1;
        swap(M[rt],m[rt]);
        return ;
    }
    int mid=(l+r)>>1;
    if(col[rt])pushdown(rt);
    if(L<=mid)update(L,R,l,mid,rt<<1);
    if(R>mid)update(L,R,mid+1,r,rt<<1|1);
    pushup(rt);
}
void update2(int x,int v,int l,int r,int rt)
{
    if(l==r&&l==x)
    {
        M[rt]=m[rt]=v;
        col[rt]=0;
        return ;
    }
    int mid=(l+r)>>1;
    if(col[rt])pushdown(rt);
    if(x<=mid)update2(x,v,l,mid,rt<<1);
    if(x>mid)update2(x,v,mid+1,r,rt<<1|1);
    pushup(rt); 
}
int query(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        return M[rt];
    }
    int mid=(l+r)>>1;
    if(col[rt])pushdown(rt);
    int ret=-0x3f3f3f3f;
    if(L<=mid)ret=max(ret,query(L,R,l,mid,rt<<1));
    if(R>mid)ret=max(ret,query(L,R,mid+1,r,rt<<1|1));
    pushup(rt);
    return ret ;
}
void change(int x,int y)
{
    while(top[x]!=top[y])
    {
        if(dep[top[x]]<dep[top[y]])swap(x,y);
        update(tim[top[x]],tim[x],1,n,1);
        x=fa[top[x]];
    }
    if(dep[x]>dep[y])swap(x,y);
    if(x!=y)
    update(tim[x]+1,tim[y],1,n,1);
}
int ask(int x,int y)
{
    int ans=-0x3f3f3f3f;
    while(top[x]!=top[y])
    {
        if(dep[top[x]]<dep[top[y]])swap(x,y);
        ans=max(ans,query(tim[top[x]],tim[x],1,n,1));
        x=fa[top[x]];
    }
    if(dep[x]>dep[y])swap(x,y);
    if(x!=y)ans=max(ans,query(tim[x]+1,tim[y],1,n,1));
    return ans;
}
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        init();
        scanf("%d",&n);
        int x,y,val;
        for(int i=1;i<=n-1;i++){scanf("%d%d%d",&x,&y,&val);edgeadd(x,y,val);}
        dfs1(1,0,1);
        dfs2(1,0);
        build(1,n,1);
        while(scanf("%s",s)&&s[0]!='D')
        {
            int x,y;
            scanf("%d%d",&x,&y);
            if(s[0]=='Q')
            {
                printf("%d\n",ask(x,y));
            }else if(s[0]=='N')
            {
                change(x,y);
            }else 
            {
                x=x*2-1;
                if(dep[edge[x].from]>dep[edge[x].to])swap(edge[x].from,edge[x].to);
                update2(tim[edge[x].to],y,1,n,1);
            }   
        }
    }
}

对拍程序:(嫌点大自己该小就好)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>

using namespace std;

FILE *fin, *fout;

const int n = 1000, m = 1000;

int adj[n + 5][n + 5];
int ex[n + 5], ey[n + 5];
int fat[n + 5], num[n + 5], last[n + 5], ans;
int vis[n + 5];

int find(int x)
{
    if (fat[x] != x) fat[x] = find(fat[x]); return fat[x];
}

void dfs(int t, int u)
{
    last[t] = u;
    for (int i = 1; i <= n; i++)
        if (adj[t][i] != 0 && i != u) dfs(i, t);
}

int lca(int x, int y)
{
    for (int i = 1; i <= n; i++) vis[i] = 0;
    while (x){
        vis[x] = 1; x = last[x];
    }
    while (!vis[y]) y = last[y];
    return y;
}

void tree_change(int t, int u)
{
    while (t != u){
        adj[t][last[t]] = adj[last[t]][t] = -adj[t][last[t]]; t = last[t];
    }
}

void tree_calc(int t, int u)
{
    while (t != u){
        if (adj[last[t]][t] > ans) ans = adj[last[t]][t];
        t = last[t];
    }
}

int main()
{
    fin = fopen("tt.in", "w");
    fout = fopen("force.out", "w");
    int i, u, v, c, j, k;
    fprintf(fin, "10\n"); 
    for (int w = 1; w <=10 ; w++){
        memset(adj, 0, sizeof(adj));
        memset(last, 0, sizeof(last));
        memset(fat, 0, sizeof(fat));
        memset(ex, 0, sizeof(ex));
        memset(ey, 0, sizeof(ey));
        memset(num, 0, sizeof(num));
        memset(vis, 0, sizeof(vis));                        
        fprintf(fin, "%d\n", n);
        for (i = 1; i <= n; i++) fat[i] = i;
        srand(time(0));
        for (i = 1; i < n; i++)
            while (1){
                u = rand() % n + 1; v = rand() % n + 1; 
                if (find(u) == find(v)) continue; c = rand() - rand(); if (c == 0) c++;
                fat[find(v)] = fat[u]; adj[u][v] = adj[v][u] = c; ex[i] = u; ey[i] = v;
                fprintf(fin, "%d %d %d\n", u, v, c); break;
            }
        dfs(1, 0);
        for (i = 1; i <= m; i++){
            k = rand() % 4;
            if (k == 0){
                u = rand() % (n - 1) + 1; c = rand() - rand(); if (c == 0) c++;
                fprintf(fin, "CHANGE %d %d\n", u, c); adj[ex[u]][ey[u]] = adj[ey[u]][ex[u]] = c;
            } else if (k == 1){
                u = rand() % n + 1; v = rand() % n + 1; 
                while (u == v) v = rand() % n + 1; j = lca(u, v);
                fprintf(fin, "NEGATE %d %d\n", u, v); 
                tree_change(u, j); tree_change(v, j);
            } else {
                u = rand() % n + 1; v = rand() % n + 1;
                while (u == v) v = rand() % n + 1;   j = lca(u, v);
                fprintf(fin, "QUERY %d %d\n", u, v); ans = 1 << 30; ans = -ans;
                tree_calc(u, j); tree_calc(v, j);
                fprintf(fout, "%d\n", ans);
            }
        }
        fprintf(fin, "DONE\n");
    }
    fclose(fin); fclose(fout);
    return 0;
}

你可能感兴趣的:(方法,解析,操作,tree,父节点)