最长回文子串

方法一:时间O(N^2)    空间O(N^2)

// A dynamic programming solution for longest palindr.
// This code is adopted from following link
// http://www.leetcode.com/2011/11/longest-palindromic-substring-part-i.html
 
#include <stdio.h>
#include <string.h>
 
// A utility function to print a substring str[low..high]
void printSubStr( char* str, int low, int high )
{
    for( int i = low; i <= high; ++i )
        printf("%c", str[i]);
}
 
// This function prints the longest palindrome substring of str[].
// It also returns the length of the longest palindrome
int longestPalSubstr( char *str )
{
    const int n = strlen( str ); // get length of input string
 
    // table[i][j] will be false if substring str[i..j] is not palindrome.
    // Else table[i][j] will be true
    bool table[n][n];
    memset( table, 0, sizeof( table ) );
 
    // All substrings of length 1 are palindromes
    int maxLength = 1;
    for( int i = 0; i < n; ++i )
        table[i][i] = true;
 
    // check for sub-string of length 2.
    int start = 0;
    for( int i = 0; i < n-1; ++i )
    {
        if( str[i] == str[i+1] )
        {
            table[i][i+1] = true;
            start = i;
            maxLength = 2;
        }
    }
 
    // Check for lengths greater than 2. k is length of substring
    for( int k = 3; k <= n; ++k )
    {
        // Fix the starting index
        for( int i = 0; i < n - k + 1 ; ++i )
        {
            // Get the ending index of substring from starting index i and length k
            int j = i + k - 1;
 
            // checking for sub-string from ith index to jth index iff str[i+1]
            // to str[j-1] is a palindrome
            if( table[i+1][j-1] && str[i] == str[j] )
            {
                table[i][j] = true;
 
                if( k > maxLength )
                {
                    start = i;
                    maxLength = k;
                }
            }
        }
    }
 
    printf("Longest palindrome substring is: ");
    printSubStr( str, start, start + maxLength - 1 );
 
    return maxLength; // return length of LPS
}
 

写的简便些则如下:

string longestPalindrome(string &s)
{
    const int n = s.size();
    bool f[n][n];
    memset(f,0,sizeof(f));
    
    int max_len = 1,start = 0;
    
    for(int i = 0; i < n;++i)
    {
        f[i][i] = true;
        for(int j = 0; j < i;++j)
        {
            f[j][i] = (s[j]==s[i] && (i-j<2 || f[j+1][i-1]));
            if(f[j][i] && max_len < i-j+1)
            {
                max_len = i-j+1;
                start = j;
            }
            
        }
    }
    return s.substr(start,max_len);
}


方法二:时间O(N^2)   空间O(1)

// A O(n^2) time and O(1) space program to find the longest palindromic substring
#include <stdio.h>
#include <string.h>
 
// A utility function to print a substring str[low..high]
void printSubStr(char* str, int low, int high)
{
    for( int i = low; i <= high; ++i )
        printf("%c", str[i]);
}
 
// This function prints the longest palindrome substring (LPS)
// of str[]. It also returns the length of the longest palindrome
int longestPalSubstr(char *str)
{
    int maxLength = 1;  // The result (length of LPS)
 
    int start = 0;
    int len = strlen(str);
 
    int low, high;
 
    // One by one consider every character as center point of 
    // even and length palindromes
    for (int i = 1; i < len; ++i)
    {
        // Find the longest even length palindrome with center points
        // as i-1 and i.  
        low = i - 1;
        high = i;
        while (low >= 0 && high < len && str[low] == str[high])
        {
            if (high - low + 1 > maxLength)
            {
                start = low;
                maxLength = high - low + 1;
            }
            --low;
            ++high;
        }
 
        // Find the longest odd length palindrome with center 
        // point as i
        low = i - 1;
        high = i + 1;
        while (low >= 0 && high < len && str[low] == str[high])
        {
            if (high - low + 1 > maxLength)
            {
                start = low;
                maxLength = high - low + 1;
            }
            --low;
            ++high;
        }
    }
 
    printf("Longest palindrome substring is: ");
    printSubStr(str, start, start + maxLength - 1);
 
    return maxLength;
}
http://leetcode.com/2011/11/longest-palindromic-substring-part-i.html

方法三:时间O(N) 空间O(N)

// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string s) {
  int n = s.length();
  if (n == 0) return "^$";
  string ret = "^";
  for (int i = 0; i < n; i++)
    ret += "#" + s.substr(i, 1);
 
  ret += "#$";
  return ret;
}
 
string longestPalindrome(string s) {
  string T = preProcess(s);
  int n = T.length();
  int *P = new int[n];
  int C = 0, R = 0;
  for (int i = 1; i < n-1; i++) {
    int i_mirror = 2*C-i; // equals to i' = C - (i-C)
    
    P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0;
    
    // Attempt to expand palindrome centered at i
    while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
      P[i]++;
 
    // If palindrome centered at i expand past R,
    // adjust center based on expanded palindrome.
    if (i + P[i] > R) {
      C = i;
      R = i + P[i];
    }
  }
 
  // Find the maximum element in P.
  int maxLen = 0;
  int centerIndex = 0;
  for (int i = 1; i < n-1; i++) {
    if (P[i] > maxLen) {
      maxLen = P[i];
      centerIndex = i;
    }
  }
  delete[] P;
  
  return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
}
http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html
http://www.felix021.com/blog/read.php?2040

你可能感兴趣的:(最长回文子串)