题目大意:
就是现在给你两个长度不超过20W的字符串, 都只包含小写字母, 求相同的回文串对数 (S, T), 其中S == T, S来自第一个字符串, T来自第二个字符串, S和T都是回文串
大致思路:
首先很容易想到的是Manacher + 后缀数组二分 + Hash的做法, 复杂度O(nlogn), 可惜的是这个题目Hash容易被卡
试了好几次Hash之后试了一发二次Hash居然神奇地过了= =...不过这题用Hash还是太靠RP了, 而且幸好时间放的宽到了20s
另外一个正确的解法是用回文树Palindromic Tree, 对于串A, B分别建立回文树, 然后从根节点(奇数的根节点和偶数根节点分别进行一次) dfs, 如果有相同的回文串必然存在相同的代表结点, 其根节点到那个回文的结点的路径也是相同的
于是两棵树同时遍历, 因为Palindromic Tree可以在O(n)的时间复杂度中处理出每种回文串的个数, 所以计数就很方便了, 另外由于回文个数在O(n)以内, dfs复杂度也是O(n)
所以在O(n)的复杂度解出这题就很容易了
两种方法的代码如下:
Manacher + 后缀数组二分 + Hash的做法 ( RP因素较高 ) :
( Hash大法好, Hash出奇迹(>_<) )
Result : Accepted Memory : 66000 KB Time : 9984 ms
/* * Author: Gatevin * Created Time: 2015/3/31 14:25:53 * File Name: Rin_Tohsaka.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; typedef unsigned long long ulint; #define maxn 200010 char A[maxn], B[maxn], s[maxn << 1]; int R[maxn << 1]; const ulint mod = 1e9 + 10071; set<pair<ulint, ulint> > S; ulint H[maxn], xp[maxn]; ulint H2[maxn], xp2[maxn]; const ulint seed = 300007uLL; const ulint seed2 = 500009uLL; void initHash(char *s, int n) { H[0] = (ulint)(s[0] - 'a' + 1); for(int i = 1; i < n; i++) H[i] = (H[i - 1]*seed % mod + (ulint)(s[i] -'a' + 1)) % mod; return; } void initHash2(char *s, int n) { H2[0] = (ulint)(s[0] - 'a' + 1); for(int i = 1; i < n; i++) H2[i] = H2[i - 1]*seed2 + (ulint)(s[i] - 'a' + 1); return; } ulint askHash(int l, int r) { if(l == 0) return H[r]; else return (H[r] - H[l - 1]*xp[r - l + 1] % mod + mod) % mod; } ulint askHash2(int l, int r) { if(l == 0) return H2[r]; else return H2[r] - H2[l - 1]*xp2[r - l + 1]; } int wa[maxn], wb[maxn], wv[maxn], Ws[maxn]; int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a + l] == r[b + l]; } void da(int *r, int *sa, int n, int m) { int *x = wa, *y = wb, *t, i, j, p; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[x[i] = r[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[x[i]]] = i; for(j = 1, p = 1; p < n; j <<= 1, m = p) { for(p = 0, i = n - j; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j; for(i = 0; i < n; i++) wv[i] = x[y[i]]; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[wv[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++; } return; } int rank[maxn], height[maxn]; void calheight(int *r, int *sa, int n) { int i, j, k = 0; for(i = 1; i <= n; i++) rank[sa[i]] = i; for(i = 0; i < n; height[rank[i++]] = k) for(k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++); return; } int dp[maxn][20]; void initRMQ(int n) { for(int i = 1; i <= n; i++) dp[i][0] = height[i]; for(int j = 1; (1 << j) <= n; j++) for(int i = 1; i + (1 << j) - 1 <= n; i++) dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]); return; } int askRMQ(int a, int b) { //int ra = rank[a], rb = rank[b]; int ra = a, rb = b; if(ra > rb) swap(ra, rb); int k = 0; while((1 << (k + 1)) <= rb - ra + 1) k++; return min(dp[ra][k], dp[rb - (1 << k) + 1][k]); } int calCnt(int l, int r, int n) { int rl = rank[l]; int lmost = rl, rmost = rl; int L = rl + 1, R = n, mid; while(L <= R) { mid = (L + R) >> 1; if(askRMQ(rl + 1, mid) >= r - l + 1) { L = mid + 1; rmost = mid; } else R = mid - 1; } L = 1, R = rl - 1; while(L <= R) { mid = (L + R) >> 1; if(askRMQ(mid + 1, rl) >= r - l + 1) { R = mid - 1; lmost = mid; } else L = mid + 1; } return rmost - lmost + 1; } vector <pair<int, int> > pal; void Manacher(char *s, int *R, int n) { int mx = 0, p = 0; R[0] = 1; S.clear(), pal.clear(); for(int i = 1; i < n; i++) { if(mx > i) R[i] = min(R[2*p - i], mx - i); else R[i] = 1; while(s[i - R[i]] == s[i + R[i]]) R[i]++; if(i + R[i] > mx) { for(int j = mx; j < i + R[i]; j++) { int l = 2*i - j, r = j; l >>= 1; r = (r & 1) ? r >> 1 : (r >> 1) - 1; if(l > r) continue; ulint hashvalue1 = askHash(l, r); ulint hashvalue2 = askHash2(l, r); set<pair<ulint, ulint> > :: iterator it = S.find(make_pair(hashvalue1, hashvalue2)); if(it == S.end()) { S.insert(make_pair(hashvalue1, hashvalue2)); pal.push_back(make_pair(l, r)); } } mx = i + R[i], p = i; } } return; } map<pair<ulint, ulint> , int> Ma, Mb; int ss[maxn], sa[maxn]; int main() { xp[0] = 1uLL; xp2[0] = 1uLL; for(int i = 1; i < maxn; i++) xp[i] = xp[i - 1]*seed % mod, xp2[i] = xp2[i - 1]*seed2; int T; scanf("%d", &T); for(int cas = 1; cas <= T; cas++) { scanf("%s", A); scanf("%s", B); int la = strlen(A), lb = strlen(B); initHash(A, la); initHash2(A, la); s[0] = '@'; for(int i = 0; i < la; i++) s[2*i + 1] = A[i], s[2*i + 2] = '#', ss[i] = A[i] - 'a' + 1; s[2*la] = '$'; ss[la] = 0; Manacher(s, R, 2*la); da(ss, sa, la + 1, 280); calheight(ss, sa, la); initRMQ(la); Ma.clear(); for(unsigned int i = 0, sz = pal.size(); i < sz; i++) Ma[make_pair(askHash(pal[i].first, pal[i].second), askHash2(pal[i].first, pal[i].second))] = calCnt(pal[i].first, pal[i].second, la); initHash(B, lb); initHash2(B, lb); s[0] = '@'; for(int i = 0; i < lb; i++) s[2*i + 1] = B[i], s[2*i + 2] = '#', ss[i] = B[i] -'a' + 1; s[2*lb] = '$'; ss[lb] = 0; Manacher(s, R, 2*lb); da(ss, sa, lb + 1, 28); calheight(ss, sa, lb); initRMQ(lb); Mb.clear(); for(unsigned int i = 0, sz = pal.size(); i < sz; i++) Mb[make_pair(askHash(pal[i].first, pal[i].second), askHash2(pal[i].first, pal[i].second))] = calCnt(pal[i].first, pal[i].second, lb); lint ans = 0; for(map<pair<ulint, ulint> , int> :: iterator it = Ma.begin(); it != Ma.end(); it++) if(Mb[(*it).first] != 0) ans += (lint)(*it).second*(lint)Mb[(*it).first]; printf("Case #%d: %I64d\n", cas, ans); } return 0; }
Palindromic Tree的做法:
Result : Accepted Memory : 53608 KB Time : 327 ms
/* * Author: Gatevin * Created Time: 2015/3/31 17:08:38 * File Name: Rin_Tohsaka.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxn 200010 struct Palindromic_Tree { struct node { int next[26]; int len; int sufflink; int times;//记录这个node代表的回文串出现的次数 }; node tree[maxn]; int L, len, suff; char s[maxn]; void newnode() { L++; for(int i = 0; i < 26; i++) tree[L].next[i] = -1; tree[L].len = tree[L].sufflink = tree[L].times = 0; return; } void init() { L = 0, suff = 2; newnode(), newnode(); tree[1].len = -1; tree[1].sufflink = 1; tree[2].len = 0; tree[2].sufflink = 1; return; } bool addLetter(int pos) { int cur = suff, curlen = 0; int alp = s[pos] - 'a'; while(1) { curlen = tree[cur].len; if(pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos]) break; cur = tree[cur].sufflink; } if(tree[cur].next[alp] != -1) { suff = tree[cur].next[alp]; tree[suff].times++; return false; } newnode(); suff = L; tree[L].len = tree[cur].len + 2; tree[cur].next[alp] = L; if(tree[L].len == 1) { tree[L].sufflink = 2; tree[L].times++; return true; } while(1) { cur = tree[cur].sufflink; curlen = tree[cur].len; if(pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos]) { tree[L].sufflink = tree[cur].next[alp]; break; } } tree[L].times++; return true; } void count() { for(int i = L; i > 0; i--) tree[tree[i].sufflink].times += tree[i].times; return; } void build() { init(); scanf("%s", s); int length = strlen(s); for(int i = 0; i < length; i++) addLetter(i); count(); return; } }; Palindromic_Tree A, B; /* * dfs从两份树的奇偶根节点开始向下, 有相同的回文串就加上数量乘积 * 只有有相同的才继续向下找 */ lint dfs(int nowA, int nowB) { lint ret = 0; for(int i = 0; i < 26; i++) if(A.tree[nowA].next[i] != -1 && B.tree[nowB].next[i] != -1) ret += (lint)A.tree[A.tree[nowA].next[i]].times * (lint)B.tree[B.tree[nowB].next[i]].times + dfs(A.tree[nowA].next[i], B.tree[nowB].next[i]); return ret; } int main() { int T; scanf("%d", &T); for(int cas = 1; cas <= T; cas++) { A.build(); B.build(); lint ans = dfs(1, 1) + dfs(2, 2); printf("Case #%d: %I64d\n", cas, ans); } return 0; }