SET解法(此法在POJ会TLE,哈希解法在后面)
题目的意思是
给n个点,让在n个点中找四个点为正方形的方案数,同四个点旋转,反转什么的只能算一个
一共有1000个点
如果直接枚举是
1000×1000×1000×1000的复杂度
每次枚举两个点,再用两个点算出另两个点的坐标,看这两个点的坐标存不存在
这样的复杂度就是1000×1000×log(1000)因为我是用set 实现查找的
已知1,2点的坐标,这里我们确认1,2是相邻的两点
这样一个正方形会被计算四次
已知: (x1,y1) (x2,y2)
则: x3=x1+(y1-y2) y3= y1-(x1-x2)
x4=x2+(y1-y2) y4= y2-(x1-x2)
或
x3=x1-(y1-y2) y3= y1+(x1-x2)
x4=x2-(y1-y2) y4= y2+(x1-x2)
接下来上代码
#include<iostream> #include<algorithm> #include<cstdio> #include<set> class coordinate { public: int x,y; }; using namespace std; coordinate a[1010]; bool operator<(coordinate a,coordinate b) { if(a.x==b.x) { return a.y<b.y; } return a.x<b.x; } int main() { int n; while (scanf("%d",&n),n) { set<coordinate>mySet; for (int i = 0; i < n; i++) { coordinate tt; scanf("%d %d",&tt.x,&tt.y); a[i]=tt; mySet.insert(tt); } int counter=0; for (int i = 0; i < n; i++) { for (int j = i+1; j < n; j++) { //coordinate[i] coordinate[j] coordinate t1,t2; t1.x=a[i].x+a[i].y-a[j].y; t1.y=a[i].y-a[i].x+a[j].x; t2.x=a[j].x+a[i].y-a[j].y; t2.y=a[j].y-a[i].x+a[j].x; if(mySet.count(t1)&&mySet.count(t2)) { /*cout<<a[i].x<<' '<<a[i].y<<endl; cout<<a[j].x<<' '<<a[j].y<<endl; cout<<t1.x<<' '<<t1.y<<endl; cout<<t2.x<<' '<<t2.y<<endl; cout<<endl;*/ counter++; } t1.x=a[i].x-a[i].y+a[j].y; t1.y=a[i].y+a[i].x-a[j].x; t2.x=a[j].x-a[i].y+a[j].y; t2.y=a[j].y+a[i].x-a[j].x; if(mySet.count(t1)&&mySet.count(t2)) { /*cout<<a[i].x<<' '<<a[i].y<<endl; cout<<a[j].x<<' '<<a[j].y<<endl; cout<<t1.x<<' '<<t1.y<<endl; cout<<t2.x<<' '<<t2.y<<endl; cout<<endl;*/ counter++; } } } printf("%d\n",counter/4); } return 0; }
HASH解法:
用哈希表替换掉set,就可以在poj过了
#include<iostream> #include<algorithm> #include<cstdio> #include<list> using namespace std; class coordinate { public: int x,y; }; class T { public: list<coordinate>Hash[60000];//2*x+y void Insert(coordinate t) { Hash[(t.x*2+t.y+60000)%60000].push_back(t); } void Clear() { for(int i=0;i<60000;i++) { Hash[i].clear(); } } bool Count(coordinate t) { int HashNum=(t.x*2+t.y+60000)%60000; for(list<coordinate>::iterator i=Hash[HashNum].begin();i!=Hash[HashNum].end();i++) { if(i->x==t.x&&i->y==t.y) { return true; } } return false; } }MySet; coordinate a[1010]; bool operator<(coordinate a,coordinate b) { if(a.x==b.x) { return a.y<b.y; } return a.x<b.x; } int main() { int n; while (scanf("%d",&n),n) { MySet.Clear(); for (int i = 0; i < n; i++) { coordinate tt; scanf("%d %d",&tt.x,&tt.y); a[i]=tt; MySet.Insert(tt); } int counter=0; for (int i = 0; i < n; i++) { for (int j = i+1; j < n; j++) { coordinate t1,t2; t1.x=a[i].x+a[i].y-a[j].y; t1.y=a[i].y-a[i].x+a[j].x; t2.x=a[j].x+a[i].y-a[j].y; t2.y=a[j].y-a[i].x+a[j].x; if(MySet.Count(t1)&&MySet.Count(t2)) { counter++; } t1.x=a[i].x-a[i].y+a[j].y; t1.y=a[i].y+a[i].x-a[j].x; t2.x=a[j].x-a[i].y+a[j].y; t2.y=a[j].y+a[i].x-a[j].x; if(MySet.Count(t1)&&MySet.Count(t2)) { counter++; } } } printf("%d\n",counter/4); } return 0; }