提取元素的轮廓及形状描述子

Refer from http://blog.163.com/lee_020/blog/static/1247556020136473917915/

findContours函数参数说明及相关函数

findContours函数,这个函数的原型为:
void findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierar-
chy, int mode, int method, Point offset=Point())
参数说明
输入图像image必须为一个2值单通道图像
contours参数为检测的轮廓数组,每一个轮廓用一个point类型的vector表示
hiararchy参数和轮廓个数相同,每个轮廓contours[ i ]对应4个hierarchy元素hierarchy[ i ][ 0 ] ~hierarchy[ i ][ 3 ],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,该值设置为负数。
mode表示轮廓的检索模式
CV_RETR_EXTERNAL表示只检测外轮廓
CV_RETR_LIST检测的轮廓不建立等级关系
CV_RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
CV_RETR_TREE建立一个等级树结构的轮廓。具体参考contours.c这个demo
method为轮廓的近似办法
CV_CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
offset表示代表轮廓点的偏移量,可以设置为任意值。对ROI图像中找出的轮廓,并要在整个图像中进行分析时,这个参数还是很有用的。
findContours后会对输入的2值图像改变,所以如果不想改变该2值图像,需创建新mat来存放,findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似
contourArea函数可以得到当前轮廓包含区域的大小,方便轮廓的筛选
findContours经常与drawContours配合使用,用来将轮廓绘制出来。其中第一个参数image表示目标图像,第二个参数contours表示输入的轮廓组,每一组轮廓由点vector构成,第三个参数contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓,第四个参数color为轮廓的颜色,第五个参数thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部,第六个参数lineType为线型,第七个参数为轮廓结构信息,第八个参数为maxLevel
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集
还可以得到轮廓的外包络矩形,使用函数boundingRect,如果想得到旋转的外包络矩形,使用函数minAreaRect,返回值为RotatedRect;也可以得到轮廓的外包络圆,对应的函数为minEnclosingCircle;想得到轮廓的外包络椭圆,对应的函数为fitEllipse,返回值也是RotatedRect,可以用ellipse函数画出对应的椭圆
如果想根据多边形的轮廓信息得到多边形的多阶矩,可以使用类moments,这个类可以得到多边形和光栅形状的3阶以内的所有矩,类内有变量m00,m10,m01,m20,m11,m02,m30,m21,m12,m03,比如多边形的质心为 x = m10 / m00,y = m01 / m00。
如果想获得一点与多边形封闭轮廓的信息,可以调用pointPolygonTest函数,这个函数返回值为该点距离轮廓最近边界的距离,为正值为在轮廓内部,负值为在轮廓外部,0表示在边界上。


Refer from http://blog.csdn.net/thefutureisour/article/details/7602652#

先看提取轮廓的代码:

[cpp] view plain copy
  1. Mat image = imread("D:/picture/images/binaryGroup.bmp",0);  
  2. if(!image.data)  
  3.     return -1;  
  4. imshow("源图像",image);  
  5.   
  6. //获取轮廓  
  7. std::vector<std::vector<Point>> contours;  
  8. //获取轮廓:  
  9. findContours(image,         //图像  
  10.     contours,               //轮廓点  
  11.                     //包含图像拓扑结构的信息(可选参数,这里没有选)  
  12.     CV_RETR_EXTERNAL,           //获取轮廓的方法(这里获取外围轮廓)  
  13.     CV_CHAIN_APPROX_NONE);      //轮廓近似的方法(这里不近似,获取全部轮廓)  
  14. //打印轮廓信息  
  15. std::cout<<"共有外围轮廓:"<<contours.size()<<"条"<<std::endl;  
  16. std::vector<std::vector<Point>>::const_iterator itContours = contours.begin();  
  17. for(;itContours != contours.end();++itContours)  
  18. {  
  19.     std::cout<<"每个轮廓的长度: "<<itContours->size()<<std::endl;  
  20. }  

注意到轮廓的存储格式为std::vector<std::vector<Point>>,他说明整个轮廓是若干条轮廓按一定顺序组成的,而每个轮廓中的点也是有顺序的。

画出轮廓就比较简单了:

[cpp] view plain copy
  1. //画出轮廓  
  2. Mat result(image.size(),CV_8U,Scalar(255));  
  3. //画出轮廓,参数为:画板,轮廓,轮廓指示(这里画出所有轮廓),颜色,线粗  
  4. drawContours(result,contours,-1,Scalar(0),2);  
  5. imshow("提取外围轮廓",result);  

还要注意提取轮廓的方法还有很多种,比如CV_RETR_LIST代表所有轮廓

[cpp] view plain copy
  1. findContours(image,         //图像  
  2.     contours,               //轮廓点  
  3.                     //包含图像拓扑结构的信息(可选参数,这里没有选)  
  4.     CV_RETR_LIST,           //获取轮廓的方法(这里获取所有轮廓)  
  5.     CV_CHAIN_APPROX_NONE);      //轮廓近似的方法(这里不近似,获取全部轮廓  
  6. //画出轮廓  
  7. drawContours(result,contours,-1,Scalar(0),2);  
  8. imshow("提取所有轮廓",result);  

通常,这样提取的轮廓包含一些我们不希望的轮廓(比如一些小洞),或者假如我们知道我们感兴趣的物体轮廓的大概范围时,我们就可以用下面的办法缩小目标范围:

[cpp] view plain copy
  1. //除去太长或者太短的轮廓  
  2. int cmin = 100;  
  3. int cmax = 1000;  
  4. std::vector<std::vector<Point>>::const_iterator itc = contours.begin();  
  5. while(itc != contours.end())  
  6. {  
  7.     if(itc->size() < cmin || itc->size() > cmax)  
  8.         itc = contours.erase(itc);  
  9.     else  
  10.         ++itc;  
  11. }  
  12.   
  13. //把结果画在源图像上:  
  14. Mat original = imread("D:/picture/images/group.jpg");  
  15. if(!original.data)  
  16.     return -1;  
  17. drawContours(original,contours,-1,Scalar(255,255,255),2);  
  18. imshow("动物的轮廓",original);  
  19.   
  20. //将轮廓重绘于白板上  
  21. result.setTo(Scalar(255));  
  22. drawContours(result,contours,-1,Scalar(0),1);  


怎么提取轮廓的特征呢?OpenCV提供了很多函数,我们展示其中的几个:

[cpp] view plain copy
  1. //轮廓的形状描述子  
  2. //外接矩形  
  3. Rect r0 = boundingRect(Mat(contours[0]));  
  4. rectangle(result,r0,Scalar(0),2);  
  5.   
  6. //最小外接圆  
  7. float radius;  
  8. Point2f center;  
  9. minEnclosingCircle(Mat(contours[1]),center,radius);  
  10. circle(result,Point(center),static_cast<int>(radius),Scalar(0),2);  
  11.   
  12. //多边形估计  
  13. std::vector<Point> poly;  
  14. //参数为:输入图像的2维点集,输出结果,估计精度,是否闭合  
  15. approxPolyDP(Mat(contours[2]),poly,5,true);  
  16. std::cout<<"多边形大小:"<<poly.size()<<std::endl;  
  17. //画出结果  
  18. std::vector<Point>::const_iterator itp = poly.begin();  
  19. while(itp != poly.end()-1)  
  20. {  
  21.     line(result,*itp,*(itp+1),Scalar(0),2);  
  22.     ++itp;  
  23. }  
  24. //将第一个点和最后一点连起来  
  25. line(result,*(poly.begin()),*(poly.end()-1),Scalar(128),2);  
  26.   
  27.   
  28. //计算凸包  
  29. std::vector<Point> hull;  
  30. convexHull(Mat(contours[3]),hull);  
  31. std::vector<cv::Point>::const_iterator it= hull.begin();  
  32. while(it != (hull.end()-1))  
  33. {  
  34.     line(result,*it,*(it+1),Scalar(0),2);  
  35.     ++it;  
  36. }  
  37. line(result,*(hull.begin()),*(hull.end()-1),Scalar(0),2);  
  38.   
  39.   
  40. //计算矩信息  
  41. itc = contours.begin();  
  42. while(itc != contours.end())  
  43. {  
  44.     //计算所有的距  
  45.     Moments mom = moments(Mat(*itc++));  
  46.     //计算并画出质心  
  47.     circle(result,Point(mom.m10/mom.m00,mom.m01/mom.m00),2,Scalar(2),2);  
  48. }  
  49. imshow("形状描述子",result);  

我们再次看到,轮廓的确是有顺序的。值得注意的是矩信息:OpenCV提供了一个结构体Moments,它的元素就是计算好的矩信息,里面存放了常用的距。

其实,OpenCV还提供了许多其他的形状描述子,比如函数cv::minAreaRect计算了最小外界倾斜的矩形。函数cv::contourArea估计轮廓区域的面积(里面的像素数)。函数cv::pointPolygonTest计算一个点是否在轮廓内,cv::matchShapes测量了2两个轮廓的相似程度等等。这里就不一一介绍了。




你可能感兴趣的:(提取元素的轮廓及形状描述子)