题意是,有一个二维(0,0)到(10,10)的区域,一个人从(0,0)开始一次拜访区域内的点,去找一样东西(就在这个区域内),每次他到达一个新的点后,都会有一句话,来告诉你是离那个东西更近了(Hotter),还是更远了(Colder),或者距离不变(Same),然后让你算出,这时那个东西可能处在的位置的区域的面积
明显的半平面交,每次取当前点和下一个点的中垂线向量加入多边形边集(当然,必须注意方向,根据距离的增加或者减小可以判断),半平面交的面积就好了
代码:
#include <cstdio> #include <iostream> #include <algorithm> #include <cstring> #include <cmath> using namespace std; const double eps = 1e-8; const double pi = acos(-1.0); const int N = 60; const double maxl = 10; struct cpoint {//C++构造函数,默认缺省值为(0,0) double x, y; cpoint(double xx = 0, double yy = 0): x(xx), y(yy) {}; }; int dcmp(double x) {//判断参数的符号,负数返回-1,0返回0,正数返回1 if (x < -eps) return -1; else return x > eps; } double cross(cpoint p0, cpoint p1, cpoint p2) { // p0p1 与 p0p2 叉积 return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y); } bool EqualPoint(cpoint a, cpoint b) {//两点相等 return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } struct cvector {//向量 cpoint s, e; double ang, d; }; //atan (double x)弧度表示的反正切 //atan2(double x,double y)弧度表示的反正切,相当于atan(x/y) void setline(double x1, double y1, double x2, double y2, cvector &v) { v.s.x = x1; v.s.y = y1; v.e.x = x2; v.e.y = y2; v.ang = atan2(y2 - y1, x2 - x1); //这里的 d 代表向量(直线)和坐标轴的截距,正数表示 原点 在该向量的左边 //(这道题要求左半平面交),负号则表示 原点 在右边 if (dcmp(x1 - x2)) // x1 > x2 v.d = (x1 * y2 - x2 * y1) / fabs(x1 - x2); else v.d = (x1 * y2 - x2 * y1) / fabs(y1 - y2); } //判向量平行 bool parallel(const cvector &a, const cvector &b) { double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x); return dcmp(u) == 0; } //求两向量(直线)交点 (两向量不能平行或重合) cpoint CrossPoint(const cvector &a, const cvector &b) { cpoint res; double u = cross(a.s, a.e, b.s), v = cross(a.e, a.s, b.e); res.x = (b.s.x * v + b.e.x * u) / (u + v); res.y = (b.s.y * v + b.e.y * u) / (u + v); return res; } //半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边] static bool VecCmp(const cvector &l, const cvector &r) { if (dcmp(l.ang - r.ang)) return l.ang < r.ang; return l.d < r.d; } cvector deq[N]; //用于计算的双端队列 void HalfPanelCross(cvector vec[], int n, cpoint cp[], int &m) { int i, tn; m = 0; sort(vec, vec + n, VecCmp); for(i = tn = 1; i < n; ++i) //平面在向量左边的筛选,方向相同的筛去,相反的不能筛去 if(dcmp(vec[i].ang - vec[i - 1].ang) != 0) vec[tn++] = vec[i]; n = tn; int bot = 0, top = 1; deq[0] = vec[0]; deq[1] = vec[1]; // vec[]大小不可小于2 for (i = 2; i < tn; ++i) { if (parallel(deq[top], deq[top - 1]) || parallel(deq[bot], deq[bot + 1]) ) return ; while ( bot < top && dcmp( cross(vec[i].s, vec[i].e, CrossPoint(deq[top], deq[top - 1])) ) < 0 ) top--; while ( bot < top && dcmp( cross(vec[i].s, vec[i].e, CrossPoint(deq[bot], deq[bot + 1])) ) < 0 ) bot++; deq[++top] = vec[i]; } while ( bot < top && dcmp( cross(deq[bot].s, deq[bot].e, CrossPoint(deq[top], deq[top - 1])) ) < 0 ) top--; while ( bot < top && dcmp( cross(deq[top].s, deq[top].e, CrossPoint(deq[bot], deq[bot + 1])) ) < 0 ) bot++; if (top <= bot + 1) return ; // 两条或两条以下的直线,面积无穷大 for (i = bot; i < top; i ++) cp[m++] = CrossPoint(deq[i], deq[i + 1]); if (bot < top + 1) cp[m++] = CrossPoint(deq[bot], deq[top]); m = unique(cp, cp + m, EqualPoint) - cp; } double PolygonArea(cpoint p[], int n) { if (n < 3) return 0; double s = p[0].y * (p[n - 1].x - p[1].x); for (int i = 1; i < n; ++i) s += p[i].y * (p[i - 1].x - p[(i + 1) % n].x); return fabs(s / 2); // 顺时针方向s为负 } //向量的旋转 //底边线段ab 绕a逆时针旋转角度A,b->b1,sinl是sinA的值。 cpoint Whirl(double cosl, double sinl, cpoint a, cpoint b) { b.x -= a.x; b.y -= a.y; cpoint c; c.x = b.x * cosl - b.y * sinl + a.x; c.y = b.x * sinl + b.y * cosl + a.y; return c; } int n, m; cvector v[N]; cpoint cp[N],cur,next; void solve() { cpoint mid; char str[10]; scanf("%s",str); mid.x=(cur.x+next.x)/2; mid.y=(cur.y+next.y)/2; cpoint kp; if(strcmp(str,"Colder")==0) kp=Whirl(0,1,mid,next); else if(strcmp(str,"Hotter")==0) kp=Whirl(0,-1,mid,next); cur=next; setline(mid.x,mid.y,kp.x,kp.y,v[n++]); HalfPanelCross(v, n, cp, m); if (m < 3) printf("0.00\n"); else printf("%.2lf\n", PolygonArea(cp, m)); } int main() { cur.x = cur.y = 0.0; setline(0, 0, maxl, 0, v[0]);//v[0] ~ v[3] 是点集的外包矩阵 setline(maxl, 0, maxl, maxl, v[1]); setline(maxl, maxl, 0, maxl, v[2]); setline(0, maxl, 0, 0, v[3]); n = 4; while (~scanf("%lf%lf",&next.x,&next.y)){ solve(); } return 0; }