1. sklearn.metrics.roc_curve(true_y. pred_proba_score, pos_labal)
计算roc曲线,roc曲线有三个属性:fpr, tpr,和阈值,因此该函数返回这三个变量,l例如
import numpy as np from sklearn.metrics import roc_curve y = np.array([1,1,2,2]) pred = np.array([0.1, 0.4, 0.35, 0.8]) fpr, tpr, thresholds = roc_curve(y, pred, pos_label=2) fpr # array([ 0. , 0.5, 0.5, 1. ]) tpr # array([ 0.5, 0.5, 1. , 1. ]) thresholds #array([ 0.8 , 0.4 , 0.35, 0.1 ]) from sklearn.metrics import auc metrics.auc(fpr, tpr) 0.75
2. sklearn.metrics.auc(x, y, reorder=False):
计算AUC值,其中x,y分别为数组形式,根据(xi, yi)在坐标上的点,生成的曲线,然后计算AUC值;
3. sklearn.metrics.roc_auc_score(true_y, pred_proba_y)
直接根据真实值(必须是二值)、预测值(可以是0/1, 也可以是proba值)计算出auc值,中间过程的roc计算省略