题目大意:
就是现在给出一个有N个结点的树(N <= 100000)编号从1到N, 树的根节点为1, 给定K, 每个点都有一个权值, 权值0 <= wi <= 10^9, 现在有Q次询问, 对于每次询问给出一个x代表询问在编号x的结点及其子树中, 出现恰好K次的取值有多少种?
大致思路:
第一次写莫队算法.....
对于静态的满足能在O(1)的时间把[L, R]的答案转移到[L, R + 1], [L - 1, R]的问题, 可以考虑莫队算法, 这题先将N个结点的后序遍历顺序处理出来, 那么每次询问就相当于在这个数列中询问连续的一段中恰好出现K次的数的种数, 于是先将权值离散化然后就可以计数了
将Q次询问离线出来分块, 按照右端点递增排序, 根据莫队算法, 复杂度在O(Nsqrt(N))级别
代码如下:
Result : Accepted Memory : 10928 KB Time : 1279 ms
/* * Author: Gatevin * Created Time: 2015/8/2 18:52:13 * File Name: Sakura_Chiyo.cpp */ #pragma comment(linker, "/STACK:16777216") #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxn 100100 int N, K, Q; vector<int> V; int w[maxn]; int L[maxn], R[maxn]; int tim; vector<int> G[maxn]; int ans; struct Ask { int l, r, pos, id; Ask(int _l, int _r, int _pos, int _id) : l(_l), r(_r), pos(_pos), id(_id){} Ask(){} }; bool cmp(Ask a1, Ask a2) { return a1.pos < a2.pos || (a1.pos == a2.pos && a1.r < a2.r); } Ask ask[maxn]; void dfs(int now, int fa) { L[now] = ++tim; for(int i = 0, sz = G[now].size(); i < sz; i++) if(G[now][i] != fa) dfs(G[now][i], now); R[now] = tim; return; } int result[maxn]; int sum[maxn]; void add(int w) { if(sum[w] == K) ans--; sum[w]++; if(sum[w] == K) ans++; return; } void del(int w) { if(sum[w] == K) ans--; sum[w]--; if(sum[w] == K) ans++; return; } int main() { int T; scanf("%d", &T); for(int cas = 1; cas <= T; cas++) { scanf("%d %d", &N, &K); V.clear(); for(int i = 1; i <= N; i++) { scanf("%d", w + i); V.push_back(w[i]); } sort(V.begin(), V.end()); for(int i = 1; i <= N; i++) w[i] = lower_bound(V.begin(), V.end(), w[i]) - V.begin();//离散化 int u, v; for(int i = 1; i <= N; i++) G[i].clear(); for(int i = 1; i < N; i++) { scanf("%d %d", &u, &v); G[u].push_back(v); G[v].push_back(u); } tim = 0; dfs(1, -1);//处理出时间戳, 实际上也就是树的后续遍历的顺序 scanf("%d", &Q); int x; int siz = sqrt(N*1.) + 4; for(int i = 0; i < Q; i++) { scanf("%d", &x); ask[i].l = L[x], ask[i].r = R[x]; ask[i].pos = L[x] / siz, ask[i].id = i; } sort(ask, ask + Q, cmp); printf("Case #%d:\n", cas); memset(sum, 0, sizeof(sum)); int l = 1, r = 0; ans = 0; add(w[++r]); for(int i = 0; i < Q; i++) { while(r < ask[i].r) add(w[++r]); while(r > ask[i].r) del(w[r--]); while(l < ask[i].l) del(w[l++]); while(l > ask[i].l) add(w[--l]); result[ask[i].id] = ans; } for(int i = 0; i < Q; i++) printf("%d\n", result[i]); if(cas != T) puts(""); } return 0; }