- bzoj 5168:[HAOI2014]贴海报 题解
Unlimied
分块bzoj---其他------OJ---题解bzojHAOI分块
5168:[HAOI2014]贴海报DescriptionBytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论。为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙。张贴规则如下:1.electoral墙是一个长度为N个单位的长方形,每个单位记为一个格子;2.所有张贴的海报的高度必须与electoral墙的高度一致的;3.每张海报以“AB”表示,
- 大厂机试题解法笔记大纲+按知识点分类+算法编码训练
二分法部门人力分配数据最节约的备份方法项目排期食堂供餐矩阵匹配书籍叠放爱吃蟠桃的孙悟空深度优先搜索(DFS)欢乐的周末寻找最大价值矿堆可组成网络的服务器连续出牌数量图像物体的边界核算检测启动多任务排序无向图染色广度优先搜索(BFS)欢乐的周末快递员的烦恼亲子学习跳马启动多任务排序电脑病毒感染图5G网络建设(最小生成树)城市聚集度问题(树形DP、并查集)电脑病毒感染(Dijkstra算法)启动多任务
- 动态规划-树形DP(换根)
今天我们来做有关换根的树形动态规划问题,解决这类问题首先必须明白换根的基本思想,理解将子节点作为根之后哪些节点的深度变大,哪些节点的深度变小了。同时做这类问题,要时常与贪心思想相结合理解,找出最大深度与次大深度,这常常是解决路径长度问题的关键。1.问题描述小蓝和小桥是两位花园爱好者,她们在自己的花园里种了一棵n个节点的树,每条边的长度为k。初始时,根节点为1号节点。她们想把这棵树卖掉,但是想卖个好
- python画龙舟_BZOJ4891 TJOI2017龙舟(Polllard-Rho)
weixin_39688750
python画龙舟
对给定模数分解质因数后约分即可。依然常数巨大过不了。#include#include#include#include#include#includeusingnamespacestd;#definelllonglong#defineN10010chargetc(){charc=getchar();while((c'Z')&&(c'z')&&(c''))c=getchar();returnc;}ll
- 动态规划(9):树形动态规划
程序员查理
#动态规划系列动态规划算法
引言在动态规划的广阔领域中,树形动态规划是一类特殊而强大的问题类型,它将动态规划的思想应用于树形结构,解决了许多在线性或网格结构上难以处理的问题。树形动态规划的特点在于状态转移发生在树的节点之间,通常从叶子节点向根节点传递信息,或者在某些情况下,从根节点向叶子节点传递信息。树形DP的基本概念什么是树形动态规划树形动态规划(TreeDP)是动态规划在树形结构上的应用,它利用树的特性来设计状态和转移方
- 生命之树--树形dp
泛舟起晶浪
算法
1.树形dp--在dfs遍历树的同时dp,从上到下递归,到叶子是边界条件https://www.luogu.com.cn/problem/P8625#includeusingnamespacestd;#defineN100011typedeflonglongll;typedefpairpii;intn,c;llw[N];llma;vectora[N];lldp[N];voiddfs(intu,in
- 算法刷题-动态规划之区间DP
亮亮爱刷题
算法动态规划
今天博主将开始区间dp的新篇章,相较于树形dp,区间dp的理解其实较为容易。石子问题是最为经典的区间dp问题,博主将从石子问题开始帮助大家更好的理解区间dp最基本的转移思想。1.题目描述有n堆石子排成一排,每堆石子有一定的数量。现在我们要将n堆石子并成为一堆,每次只能合并相邻的两堆石子,合并的花费为这两堆石子的总数。经过n−1次合并后会成为一堆,求总的最小花费。输入描述第一行输入一个n,代表石子的
- 第四次CCF计算机软件能力认证 网络延时 (树形Dp)
Jay_fearless
CSP
CSP评测地址分析本题其实是让我们求树的直径。由于本题有n+m-1个节点,所以N要赋值为2e4+10。之后利用树形Dp思想求树的直径。C++代码#includeusingnamespacestd;constintN=2e4+10;//注意总节点个数是n+m-1,要开2e4,不然会MLEintn,m,ans;inth[N],e[2*N],ne[2*N],idx;voidadd(inta,intb){
- 第十二届蓝桥杯 2021年省赛真题 (Java 大学A组) 第一场
肖有量
java蓝桥杯算法
蓝桥杯2021年省赛真题(Java大学A组)#A相乘朴素解法同余方程#B直线直线方程集合分式消除误差平面几何#C货物摆放暴力搜索缩放质因子#D路径搜索单源最短路径#E回路计数记忆化搜索#F最少砝码变种三进制#G左孩子右兄弟树形DP#H异或数列博弈论#I双向排序去冗操作填数游戏ChthollyTree#J分果果动态规划Placeholder#A相乘本题总分:555分问题描述 小蓝发现,他将111至
- 【动态规划】树形dp
啊我不会诶
动态规划动态规划算法
参考文章:树形dp讲解(你不会后悔点进来)动态规划进阶(六):树形DP原理详解核心思想:DFS遍历+记忆化自底向上,后序遍历,父节点最优解从子节点转移过来状态节点维度:dp[u][s]表示节点u在状态s下的最优解常见状态:选择/不选当前节点颜色标记(如红黑树着色问题)距离限制(如树的直径)典:没有上司的舞会父节点最优解从子节点转移过来结构:领导下属的关系类似树状态:一个节点有两种状态,要么去要么不
- 寒假学习笔记【匠心之作,图文并茂】——1.19树的重心、直径、树形 DP
cwplh
学习笔记学习笔记深度优先图论算法
文章目录树的重心树的直径树形DP换根DP参考文献树的重心还是先看OI-Wiki上的定义:如果在树中选择某个节点并删除,这棵树将分为若干棵子树,统计子树节点数并记录最大值。取遍树上所有节点,使此最大值取到最小的节点被称为整个树的重心。(这里以及下文中的「子树」若无特殊说明都是指无根树的子树,即包括「向上」的那棵子树,并且不包括整棵树自身。)看上去挺绕,让我来给你捋捋。我们先举个例子:首先我们看去掉1
- 【BZOJ】1419 Red is good
weixin_34129696
【算法】期望DP【题解】其实把状态表示出来就是很简单的期望DP。f[i][j]表示i张红牌,j张黑牌的期望。i=0时,f[0][j]=0。j=0时,f[i][0]=i。f[i][j]=max(0,i/(i+j)*(f[i-1][j]+1)+j/(i+j)*(f[i][j-1]-1))。直接使用期望定义式E(X)=Σpi*xi不四舍五入就是在后一位-5。空间限制必须用递推+滚动数组。#include
- 【BZOJ】1419 Red is Good
Pure_W
BZOJ
大意:桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱直接期望DPf[i][j]表示开一局i红j黑的游戏的期望收益,然后f[i][j]可以由f[i-1][j]和f[i][j-1]转移要滚动#include#include#definecintconstint&usingnamespaces
- BZOJ 1419: Red is good(期望DP)
AbEver
BZOJ期望&概率DP&记忆化搜索
题目描述权限传送门题解比较水的期望DP,但也让我悟到了一点关于期望的东西。题目描述得不可描述,看起来逼格很高。但平均就是期望,关键是最优策略这点。根据我幼稚的理解,期望是均值没错,但期望之所以叫期望是因为它在预知未来,当前这个状态期望的得分就是作出决策后未来能得到分数的均值。所以或许这就是期望DP的状态要倒过来推的原因吧。考虑f[i][j]为剩下i张红牌j张黑牌的在最优策略下的期望。根据我脚推的式
- 动态规划分享之 —— 买卖股票的最佳时机
他们都不看好你,偏偏你最不争气
动态规划算法c++
我今天分享的是关于动态规划中最有名的一组题目——股票买卖问题。为什么选它?因为它覆盖了大部分DP的建模套路,同时题意又很好理解,非常适合入门。DP类型简要说明典型例子1.线性DP当前状态只与前一两个状态有关斐波那契数列、爬楼梯、打家劫舍2.区间DP处理“区间”上问题括号匹配、石子合并3.背包DP决策是否选某个物品01背包、完全背包、多重背包4.树形DP在树结构上处理最优解树的直径、选点问题5.状压
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支【二分+贪心】
weixin_30367543
1639:[Usaco2007Mar]MonthlyExpense月度开支【题目描述】传送门【题解】二分答案,然后贪心check就可以了。代码如下#includeusingnamespacestd;intn,m,Ans,a[100005];boolcheck(intx){intSum=0,Now=1;for(inti=1;ix)return0;if(Sum+a[i]>1;L>1)if(check(
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支
AC_IS_DELIGHTFUL
BZOJsilverUSACO银组题二分答案
1639:[Usaco2007Mar]MonthlyExpense月度开支TimeLimit:5SecMemoryLimit:64MBSubmit:1052Solved:519[Submit][Status][Discuss]DescriptionFarmerJohn是一个令人惊讶的会计学天才,他已经明白了他可能会花光他的钱,这些钱本来是要维持农场每个月的正常运转的。他已经计算了他以后N(1#in
- 蓝桥备赛指南(14):树的直径与重心
神里流~霜灭
深度优先算法二叉树c语言递归c++数据结构
树的直径什么是树的直径?树的直径是树上最长的一条链,当然这条链并不唯一,所以一棵树可能有多条直径。直径由两个顶点u、v来决定,若由一条直径(u,v),则满足一下性质:1)u、v的度数均为1;2)在任意一个点为根的树上,u、v必然存在一个点作为最深的叶子节点。深度就是点距离根节点的距离。如图所示:树的直径有两种求法:第一种就是“跑两遍dfs”;第二种就是树形dp。由于直径端点u、v必然存在一个是深度
- 数据结构与算法-动态规划-区间dp,状态机dp,树形dp
一个人在码代码的章鱼
算法学习#动态规划算法图论c++
3-区间DP介绍通常用(dp[i][j])表示区间([i,j])上的某种最优值,比如(dp[i][j])可以表示从下标(i)到(j)的元素进行某种操作所得到的最大收益、最小花费等。状态转移方程:这是区间DP的关键。它描述了如何从较小的区间的最优解得到较大区间的最优解。例如,对于一个表达式求值问题,可能有(dp[i][j]=max{dp[i][k]+dp[k+1][j]+text{合并操作}(i,k
- 2.27省选模拟赛补题记录:直径(容斥,树形dp,换根dp)
liang_2026
算法学习笔记
题意定义一棵树的直径条数为(n2)\binom{n}{2}(2n)对点中,取道距离最大值的选法数量。给定一棵nnn个点的树,你可以将每条边的权值赋值为000或111。你需要求出所有2n−12^{n-1}2n−1种赋值方法生成的树的直径条数之和。你只需要输出答案对998244353998244353998244353取模后的结果即可。2≤n≤20002\leqn\leq20002≤n≤2000。分析
- 第十四届蓝桥杯省赛C++C组——子矩阵(蓝桥杯篇章完结撒花)
Dawn_破晓
蓝桥杯一个月速成日志蓝桥杯c++c语言
本来想写的速成日志也没写多少,cb国二,最后一题树形DP调了一小时发现h数组没置-1,最后无果,如果没马虎可能有国一水平了,正儿八经准备用了两个月,因为要考研,每天只学2-3小时的算法,一共刷了300多道题吧,由于之前选过ACM(实验课因为周六去,懒得去还给我挂了)和算法分析课,所以还是有点基础的,如果算上一年前刷的题总共加起来也就400多道题吧。说一下历程吧,一年前的题都是老师布置的作业,迫不得
- 论单调队列优化DP
VU-zFaith870
c++动态规划推荐算法
前情提要,参考资料:单调队列优化DP(超详细!!!)-endl\n-博客园【动态规划】选择数字(单调队列优化dp)_哔哩哔哩_bilibili背景:最近作者快被DP逼疯了,写篇博客做记录。以下是对各DP的原理阐释:单调队列通过队列元素的吸入与弹出,形成单调性的结构,使算法能够进行线性处理,大大优化了时间复杂度。接下来讲解单调队列在区间DP、背包DP、树形DP还有数位DP中的应用:1.单调队列优化区
- BZOJ3843: ZCC loves Army
L_0_Forever_LF
BZOJ多校LCTsplay
把树转成左儿子右兄弟的那种二叉树的形式发现一个点能且仅能给他的子树传递order,询问3就变成了询问一个点到根有多少个点对于传递message,可以给每个点定一个编号0的虚儿子,给他赋权1,就变成了询问两点间路径的权值和,注意要特判一个点是另一个点的祖先的情况,bzoj上的数据有误,不判这个才能过,hdu上的数据是对的可以去那里交对于操作1,把某个人的一段儿子截下来,可以用n棵splay处理每个人
- BZOJ3850: ZCC Loves Codefires
L_0_Forever_LF
BZOJ多校贪心数学
考虑最优的顺序满足什么性质设两个部件A,B顺序为A在B前面,费用分别是a,b,耗时ta,tb,中间部分费用和S,耗时和T如果最优顺序中A在B前面(A,B前后的部件显然不需要考虑),则有ata+Sta+b(ta+T+tb)ST>btb于是Sta#include#include#include#include#include#include#include#include#include#includ
- [BZOJ1093][ZJOI2007]最大半连通子图(Tarjan+拓扑排序+DP)
xyz32768
BZOJUOJLOJ拓扑排序Tarjan
首先得到,一个强连通分量一定是半连通的。把强连通分量缩点之后,可以得到一个拓扑图。下面,sze[u]为新图中点u所对应强连通分量的大小。缩点之后,就很容易得出,一个半连通子图一定是拓扑图中的一条链,半连通子图的大小为这条链上所有点的sze之和。所以,现在就是要求这个拓扑图的最长链(sze之和最大)。考虑按照拓扑排序DP,f[u]表示以u为终点的最长链长度:1、对于点u,如果点u的入度为0,则f[u
- bzoj 1093: [ZJOI2007]最大半连通子图【tarjan+拓扑排序+dp】
weixin_30951743
先tarjan缩成DAG,然后答案就变成了最长链,dp的同时计数即可就是题面太唬人了,没反应过来#include#include#include#include#includeusingnamespacestd;constintN=100005;intn,m,mod,h[N],cnt,dfn[N],low[N],tot,bl[N],col,s[N],top,si[N],d[N],f[N],g[N]
- BZOJ 1726: [Usaco2006 Nov]Roadblocks第二短路 ——Dijkstra+玄学
通信男神杨丽斌
瞎写图论
这个题玄学冲过,规定每个点访问次数不能超过50次,然后找优先队列中第二次到达终点t的状态返回就ok记录一下,怕忘了#include#include#include#include#include#include#includeusingnamespacestd;constintmaxn=5010;constintINF=0x3f3f3f3f;structHeapNode{intd,u;HeapNo
- 2016年2月小记录
weixin_30485799
开发工具
2.2发现自己bzoj第一版屯了不少题,就先A几道吧。bzoj1016:[JSOI2008]最小生成树计数,就是kruskal求出最小生成树后暴力一下就行了,其实不知道为什么可以过,反正就是可以过。bzoj1007:[HNOI2008]水平可见直线这题的结论太强了,按斜率排序,维护一个栈,判断交点就行啦,然后被卡精度了,不过这题idea特别好bzoj1011:[HNOI2008]遥远的行星这题就是
- leetcode 337 打家劫舍3 树形dp入门
abant2
动态规划树
经典的选或者不选问题。这个问题应该是自底向上的一个过程,因为我们最终只看根节点状态就可以知道结果,而不用统计所有底部信息,是较为方便的。之后我们考虑dp数组怎么存,一种使用树形数组存,另外就是dfs过程中存。对于这个题,dfs是一种很方便的方式,前序遍历就很方便,左右处理完后,中间看两边取或者不取的状态的最优值,这个和普通的打家劫舍定义不太一样。普通的一个数就记录了,这边要两个数,还是比较有趣的,
- 代码随想录算法训练营第三十九天-动态规划-337. 打家劫舍 III
taoyong001
算法动态规划c++leetcode
老师讲这是树形dp的入门题目解题思路是以二叉树的遍历(递归三部曲)再结合动规五部曲dp数组如何定义:只需要定义一个二个元素的数组,dp[0]与dp[1]dp[0]表示不偷当前节点的最大价值dp[1]表示偷当前节点后的最大价值这样可以把每个节点的状态值都表示出来但这个数组的两个值只表示当前节点的状态值递归时要使用后序遍历:使用后序遍历的原因就是要从叶子结点一层一层向上统计出来/***Definiti
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s