欧几里德算法(辗转相除法) 求最大公约数

转自:http://www.cnblogs.com/dah/archive/2007/03/06/666114.html

 

今天上课老师问"辗转相除法"又叫什么算法..居然没人知道..更居然的是..老师也忘了...
以前我貌似在VC的Samples里看到过这个算法, 似乎是叫欧几里德... 但也忘了是怎么辗转相除的..

特此"百度知道"之:

Euclid
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

定理:gcd(a,b) = gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:

void swap(int & a, int & b)
{
int c = a;
a = b;
b = c;
}
int gcd(int a,int b)
{
if(0 == a )
{
return b;
}
if( 0 == b)
{
return a;
}
if(a > b)
{
swap(a,b);
}
int c;
for(c = a % b ; c > 0 ; c = a % b)
{
a = b;
b = c;
}
return b;
}
参考资料:internet ...

当然还有个递归版的, 其实gcd函数一般不会递归调用很多次, 所以递递归还是不错的:
int gcd(int a, int b)
{
    if (b > 0)
    {
        return gcd(b, a % b);
    }
    return a;
}

你可能感兴趣的:(欧几里德算法(辗转相除法) 求最大公约数)