UVA10892 最小公倍数素因子分解

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1833

A pair of numbers has a unique LCM but a single number can be the LCM of more than one possible pairs. For example 12 is the LCM of (1, 12)(2, 12)(3,4) etc. For a given positive integer N, the number of different integer pairs with LCM is equal to N can be called the LCMcardinality of that number N. In this problem your job is to find out the LCM cardinality of a number.

 

Input

The input file contains at most 101 lines of inputs. Each line contains an integer N (0<N<=2*109). Input is terminated by a line containing a single zero. This line should not be processed.

 

Output

For each line of input except the last one produce one line of output. This line contains two integers N and C. Here N is the input number and Cis its cardinality. These two numbers are separated by a single space.

 

Sample Input                             Output for Sample Input

2
12
24
101101291
0

2 2

12 8

24 11

101101291 5

根据素因子分解求最小公倍数的算法,可以的得出这样的结论。如果对一个数进行素因子分解,那么思路就明显了

思路:(引用别人的解释)

1. 设n=lcm(a,b)=(p1^r1)*(p2^r2)*(p3^r3)…(pm^rm)

又设a=(p1^a1)*(p2^a2)*(p3^a3)…(pm^am),b=(p1^b1)*(p2^b2)*(p3^b3)…(pm^bm)

则由lcm的定义有ri=max{ai,bi}

所以对于每个ri,ai和bi中至少有一个要取ri

2. 对于ai取ri的情况,bi可以取[0,ri-1]的任意整数,这有ri种情况;bi取ri的情况同样是ri种。最后加上ai和bi都取ri的情况,共有(2*ri+1)种情况

3. 最后,由于这么考虑把(a,b)和(b,a)算重复了,但(n,n)的情况只算了一遍,所以最后要ans=(ans+1)/2=ans/2+1(因为ans是奇数)

4. 优化:只考虑√n范围内的质数,但这样会存在漏掉一个大质数的情况(比如n=2*101等),这个大质数的幂次只能为1(即少算了一个*(2*1+1)),所以在这种情况发生时要补上ans*=3,写成位运算就是ans+=ans<<1了。

#include <iostream>
#include <cstdio>
#include <string.h>
#include <cmath>
using namespace std;
const int maxx=100005;
int fac[maxx];
int num[maxx],prime[maxx],p[maxx];
int cnt,k;
void isprime()
{
    memset(prime,true,sizeof(prime));
    k=0;
    for(int i=2;i<maxx;i++)
    {
        if(prime[i])
        {
            p[k++]=i;
            for(int j=i+i;j<maxx;j+=i)
                prime[i]=false;
        }
    }
}
void gao(long long n)
{
    cnt=0;
    isprime();
    long long lim=(int)sqrt(n);
    for(int i=0;i<k;i++)
        if(n%p[i]==0)
        {
            int a=0;
            while(n%p[i]==0)
            {
                n/=p[i];
                a++;
            }
            fac[cnt]=p[i];
            num[cnt++]=a;
        }
    if(n>1)
    {
        fac[cnt]=n;
        num[cnt++]=1;
    }
}
int main()
{
    long long n;
    while(cin >> n)
    {
        if(n==0)
            break;
        gao(n);
        long long ans=1;
        for(int i=0;i<cnt;i++)
            ans*=num[i]*2+1;
        ans=(ans+1)/2;
        cout << n << " " << ans<< endl;
    }
    return 0;
}



你可能感兴趣的:(UVA10892 最小公倍数素因子分解)