题目大意:
给出一个n*m的矩形, n, m <= 30, 从p <= 500个矩形中选择一些矩形使得这些矩形不重合但刚好拼凑出n*m的这个矩形(矩形位置都不能移动), 求从给出的矩形中最少需要挑出几个才能满足这个条件
大致思路:
就是将n*m个小的1*1的正方形视作一个单位做精确覆盖问题就好了
最坏情况下900列, 500行, 直接用DLX就可以
代码如下:
Result : Accepted Memory : 10828 KB Time : 70 ms
/* * Author: Gatevin * Created Time: 2015/10/4 18:10:46 * File Name: Sakura_Chiyo.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxnode 450010 #define maxn 510 #define maxm 1000 struct DLX { int n, m, size; int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode]; int H[maxn], S[maxm]; int ansd, ans[maxn]; void init(int _n, int _m) { n = _n; m = _m; for(int i = 0; i <= m; i++) { S[i] = 0; U[i] = D[i] = i; L[i] = i - 1; R[i] = i + 1; } R[m] = 0; L[0] = m; size = m; for(int i = 1; i <= n; i++) H[i] = -1; } void Link(int r, int c) { ++S[Col[++size] = c]; Row[size] = r; D[size] = D[c]; U[D[c]] = size; U[size] = c; D[c] = size; if(H[r] < 0) H[r] = L[size] = R[size] = size; else { R[size] = R[H[r]]; L[R[H[r]]] = size; L[size] = H[r]; R[H[r]] = size; } } void remove(int c) { L[R[c]] = L[c]; R[L[c]] = R[c]; for(int i = D[c]; i != c; i = D[i]) for(int j = R[i]; j != i; j = R[j]) { U[D[j]] = U[j]; D[U[j]] = D[j]; --S[Col[j]]; } } void resume(int c) { for(int i = U[c]; i != c; i = U[i]) for(int j = L[i]; j != i; j = L[j]) ++S[Col[U[D[j]] = D[U[j]] = j]]; L[R[c]] = R[L[c]] = c; } void Dance(int dep) { if(dep >= ansd) return; if(R[0] == 0) { ansd = min(ansd, dep); return; } int c = R[0]; for(int i = R[0]; i != 0; i = R[i]) if(S[i] < S[c]) c = i; remove(c); for(int i = D[c]; i != c; i = D[i]) { ans[dep] = Row[i]; for(int j = R[i]; j != i; j = R[j]) remove(Col[j]); Dance(dep + 1); for(int j = L[i]; j != i; j = L[j]) resume(Col[j]); } resume(c); return; } void solve() { int N, M, p; scanf("%d %d %d", &N, &M, &p); init(p, N*M); for(int i = 1; i <= p; i++) { int x1, y1, x2, y2; scanf("%d %d %d %d", &x1, &y1, &x2, &y2); for(int x = x1; x < x2; x++) for(int y = y1; y < y2; y++) Link(i, x*M + y + 1); } ansd = p + 1; Dance(0); if(ansd == p + 1) puts("-1"); else printf("%d\n", ansd); return; } }; DLX dlx; int main() { int T; scanf("%d", &T); while(T--) dlx.solve(); return 0; }