学着大神优化了FFT常数:http://blog.csdn.net/geotcbrl/article/details/50636401
可以看出来这是个生成函数
暴力的话是N次FFT
然后考虑分块 B次FFT + 块内统计
#include<cstdio> #include<cstdlib> #include<complex> #include<algorithm> #include<cstring> #define cl(x) memset(x,0,sizeof(x)) #define PI acos(-1.0) using namespace std; typedef long long ll; inline char nc() { static char buf[100000],*p1=buf,*p2=buf; if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; } return *p1++; } inline void read(int &x){ char c=nc(),b=1; for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1; for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b; } struct comp { long double real , imag; comp(long double real = 0 , long double imag = 0):real(real) , imag(imag) { } inline friend comp operator+(comp&a , comp&b) { return comp(a.real + b.real , a.imag + b.imag); } inline friend comp operator-(comp&a , comp&b) { return comp(a.real - b.real , a.imag - b.imag); } inline friend comp operator*(comp&a , comp&b) { return comp(a.real * b.real - a.imag * b.imag , a.imag * b.real + a.real * b.imag); } inline friend void swap(comp&a , comp&b) { comp c = a ; a = b ; b = c; } }; int n,m,Len; comp a[524299]; ll c[524299],Rev[524299]; inline void FFT(comp *a,int r) { for (int i=0;i<n;i++) if (i<Rev[i]) swap(a[i],a[Rev[i]]); for (int i=1;i<n;i<<=1) { comp wn(cos(PI/i),r*sin(PI/i)); for (int j=0;j<n;j+=(i<<1)) { comp w(1,0); for (int k=0;k<i;k++,w=w*wn) { comp x=a[j+k],y=w*a[j+i+k]; a[j+k]=x+y; a[j+i+k]=x-y; } } } if (r==-1) for (int i=0;i<n;i++) a[i].real/=n,a[i].imag/=n;; } int N,B,tot,V; int A[100005],pos[100005]; int cnt[85][30005],st[85],ed[85]; ll ans; int L[30005],R[30005],pre[30005]; inline void FFT_init() { m=2*V; for (n=1;n<=m;n<<=1) Len++; for(int i=0;i<n;i++) Rev[i]=(Rev[i>>1]>>1)|((i&1)<<(Len-1)); } inline void Mul() { // cl(a); // cl(b); memset(a,0,sizeof(comp)*(n+1)); for (int i=0;i<=V;i++) a[i]=comp(L[i]+R[i],L[i]-R[i]); // for (int i=0;i<=V;i++) a[i]=L[i],b[i]=R[i]; FFT(a,1); //FFT(b,1); // for (int i=0;i<n;i++) a[i]*=b[i]; for (int i=0;i<n;i++) a[i]=a[i]*a[i]; FFT(a,-1); for(int i=0;i<=m;i+=2) c[i]=(ll)(a[i].real/4+0.1); } inline void calc(int x) { int t=A[x]+A[x],p=pos[x]; for (int i=st[p];i<x;i++) if (t-A[i]>=0 && t-A[i]<=V) ans+=R[t-A[i]]; for (int i=x+1;i<=ed[p];i++) if (t-A[i]>=0 && t-A[i]<=V) { ans+=L[t-A[i]]; ans+=pre[t-A[i]]; } if (p!=1 && p!=tot) ans+=c[t]; } inline void Solve() { FFT_init(); for (int i=1;i<=tot;i++) { for (int j=st[i-1];i-1 && j<=ed[i-1];j++) L[A[j]]++; for (int j=st[i];j<=ed[i];j++) R[A[j]]--; if (i!=1 && i!=tot) Mul(); cl(pre); for (int j=st[i];j<=ed[i];j++) calc(j),pre[A[j]]++; } } int main() { freopen("t.in","r",stdin); freopen("t.out","w",stdout); read(N); B=2000; for (int i=1;i<=N;i++) { read(A[i]); R[A[i]]++; V=max(V,A[i]); pos[i]=(i-1)/B+1; } tot=pos[N]; for (int i=1;i<=tot;i++) st[i]=(i-1)*B+1,ed[i]=i*B; ed[tot]=min(ed[tot],N); Solve(); printf("%lld\n",ans); return 0; }