HDFS写文件过程 源码分析


HDFS写入文件的重要概念
HDFS一个文件由多个block构成。HDFS在进行block读写的时候是以packet(默认每个packet为64K)为单位 进行的。每一个packet由若干个chunk(默认512Byte)组成。Chunk是进行数据校验的基本单位,对每一个chunk生成一个校验和(默 认4Byte)并将校验和进行存储。
在写入一个block的时候,数据传输的基本单位是packet,每个packet由若干个chunk组成。
HDFS客户端写文件示例代码
FileSystem hdfs = FileSystem.get(new Configuration());
Path path = new Path("/testfile");

// writing
FSDataOutputStream dos = hdfs.create(path);
byte[] readBuf = "Hello World".getBytes("UTF-8");
dos.write(readBuf, 0, readBuf.length);
dos.close();

hdfs.close();
文件的打开
上传一个文件到hdfs,一般会调用DistributedFileSystem.create,其实现如下:
public FSDataOutputStream create(Path f, FsPermission ermission,boolean overwrite,int bufferSize, short replication, long lockSize,Progressable progress) throws IOException
{
return new FSDataOutputStream  (dfs.create(getPathName(f), permission,overwrite, replication, blockSize, progress, bufferSize),        statistics);
}
其最终生成一个FSDataOutputStream用于向新生成的文件中写入数据。其成员变量dfs的类型为DFSClient,DFSClient的create函数如下:
public OutputStream create(String src,FsPermission permission,boolean overwrite,short replication,long blockSize,Progressable progress,int buffersize) throws IOException
{
    checkOpen();
    if (permission == null)
  {
      permission = FsPermission.getDefault();
   }
 FsPermission masked = permission.applyUMask(FsPermission.getUMask(conf));
OutputStream result = new DFSOutputStream(src, masked,overwrite, replication, blockSize, progress, buffersize,   conf.getInt("io.bytes.per.checksum", 512));
    leasechecker.put(src, result);
    return result;
}
其中构造了一个DFSOutputStream,在其构造函数中,同过RPC调用NameNode的create来创建一个文件。 
当然,构造函数中还做了一件重要的事情,就是streamer.start(),也即启动了一个pipeline,用于写数据,在写入数据的过程中,我们会仔细分析。
DFSOutputStream(String src, FsPermission masked, boolean overwrite,short replication, long blockSize, Progressable progress,
                int buffersize, int bytesPerChecksum) throws IOException
{
    this(src, blockSize, progress, bytesPerChecksum);
    computePacketChunkSize(writePacketSize, bytesPerChecksum);
   try
   {
namenode.create(src, masked, clientName, overwrite, replication, blockSize);
   } catch(RemoteException re)
   {
throw re.unwrapRemoteException(AccessControlException.class,QuotaExceededException.class);
    }
    streamer.start();
}
 通过rpc调用NameNode的create函数,调用namesystem.startFile函数,其又调用startFileInternal函数,它创建一个新的文件,状态为under construction,没有任何data block与之对应。
 
dfsclient文件的写入
下面轮到客户端向新创建的文件中写入数据了,一般会使用FSDataOutputStream的write方法:
按照hdfs的设计,对block的数据写入使用的是pipeline的方式,也即将数据分成一个个的package,如果需要复制三分,分别写入DataNode 1, 2, 3,则会进行如下的过程:
首先将package 1写入DataNode 1
然后由DataNode 1负责将package 1写入DataNode 2,同时客户端可以将pacage 2写入DataNode 1
然后DataNode 2负责将package 1写入DataNode 3, 同时客户端可以讲package 3写入DataNode 1,DataNode 1将package 2写入DataNode 2
就这样将一个个package排着队的传递下去,直到所有的数据全部写入并复制完毕
FSDataOutputStream的write方法会调用DFSOutputStream的write方法,而DFSOutputStream继承自FSOutputSummer,所以实际上是调用FSOutputSummer的write方法,如下:
public synchronized void write(byte b[], int off, int len)
  throws IOException
{
    //参数检查
    for (int n=0;n<len;n+=write1(b, off+n, len-n)) {    }
}
FSOutputSummer的write1的方法如下:

private int write1(byte b[], int off, int len) throws IOException {
   if(count==0 && len>=buf.length)
{
      // buf初始化的大小是chunk的大小,默认是512,这里的代码会在写入的数据的剩余内容大于或等于一个chunk的大小时调用
      // 这里避免多余一次复制
      final int length = buf.length;
      sum.update(b, off, length);//length是一个完整chunk的大小,默认是512,这里根据一个chunk内容计算校验和
      writeChecksumChunk(b, off, length, false);
      return length;
  }
    // buf初始化的大小是chunk的大小,默认是512,这里的代码会在写入的数据的剩余内容小于一个chunk的大小时调用
    // 规避了数组越界问题
    int bytesToCopy = buf.length-count;
    bytesToCopy = (len<bytesToCopy) ? len : bytesToCopy;
    sum.update(b, off, bytesToCopy);//bytesToCopy不足一个chunk,是写入的内容的最后一个chunk的剩余字节数目
    System.arraycopy(b, off, buf, count, bytesToCopy);
    count += bytesToCopy;
    if (count == buf.length) {//如果不足一个chunk,就缓存到本地buffer,如果还有下一次写入,就填充这个chunk,满一个chunk再flush,count清0
      // local buffer is full
      flushBuffer();//最终调用writeChecksumChunk方法实现
    }
    return bytesToCopy;
  }
writeChecksumChunk的实现如下:
//写入一个chunk的数据长度(默认512),忽略len的长度
private void writeChecksumChunk(byte b[], int off, int len, boolean keep)
  throws IOException
{
    int tempChecksum = (int)sum.getValue();
   if (!keep)
   {
      sum.reset();
    }
    int2byte(tempChecksum, checksum);//把当前chunk的校验和从int转换为字节
    writeChunk(b, off, len, checksum);
}
writeChunk由子类DFSOutputStream实现,如下:
protected synchronized void writeChunk(byte[] b, int offset, int len, byte[] checksum)throws IOException
{
      //创建一个package,并写入数据
      currentPacket = new Packet(packetSize, chunksPerPacket,bytesCurBlock);
      currentPacket.writeChecksum(checksum, 0, cklen);
      currentPacket.writeData(b, offset, len);
      currentPacket.numChunks++;
      bytesCurBlock += len;
      //如果此package已满,则放入队列中准备发送
      if (currentPacket.numChunks == currentPacket.maxChunks ||bytesCurBlock == blockSize) {
          ......
          dataQueue.addLast(currentPacket);
          //唤醒等待dataqueue的传输线程,也即DataStreamer
          dataQueue.notifyAll();
          currentPacket = null;
          ......
      }
}
 writeChunk比较简单,就是把数据填充packet,填充完毕,就放到dataQueue,再唤醒DataStreamer。
DataStreamer完成了数据的传输,DataStreamer的run函数如下:
public void run()
{
    while (!closed && clientRunning) {
      Packet one = null;
      synchronized (dataQueue) {
      boolean doSleep = processDatanodeError(hasError, false);
//如果ack出错,则处理IO错误
        //如果队列中没有package,则等待
    while ((!closed && !hasError && clientRunning && dataQueue.size() == 0) || doSleep) {
          try {
            dataQueue.wait(1000);
          } catch (InterruptedException  e) {
          }
          doSleep = false;
        }
        try {
          //得到队列中的第一个package
          one = dataQueue.getFirst();
          long offsetInBlock = one.offsetInBlock;
          //由NameNode分配block,并生成一个写入流指向此block
          if (blockStream == null) {
            nodes = nextBlockOutputStream(src);
            response = new ResponseProcessor(nodes);
            response.start();
          }
          ByteBuffer buf = one.getBuffer();
          //将packet从dataQueue移至ackQueue,等待确认
          dataQueue.removeFirst();
          dataQueue.notifyAll();
          synchronized (ackQueue) {
            ackQueue.addLast(one);
            ackQueue.notifyAll();
          }
          //利用生成的写入流将数据写入DataNode中的block
          blockStream.write(buf.array(), buf.position(), buf.remaining());
          if (one.lastPacketInBlock) {
            blockStream.writeInt(0); //表示此block写入完毕
          }
          blockStream.flush();
        } catch (Throwable e) {
        }       
        if (one.lastPacketInBlock) {
            //数据块写满,做一些清理工作,下次再申请块
            response.close();        // ignore all errors in Response
            synchronized (dataQueue) {
              IOUtils.cleanup(LOG, blockStream, blockReplyStream);
              nodes = null;
              response = null;
              blockStream = null;
//设置为null,下次就会判断blockStream为null,申请新的块
              blockReplyStream = null;
            }
        }
    }
      ......
  }
DataStreamer线程负责把准备好的数据packet,顺序写入到DataNode,未确认写入成功的packet则移动到ackQueue,等待确认。
DataStreamer线程传输数据到DataNode时,要向namenode申请数据块,方法是nextBlockOutputStream,再调用locateFollowingBlock,通过RPC调用namenode.addBlock(src, clientName),在NameNode分配了DataNode和block以后,createBlockOutputStream开始写入数据。
客户端在DataStreamer的run函数中创建了写入流后,调用blockStream.write将packet写入DataNode
 
DataStreamer还会启动ResponseProcessor线程,它负责接收datanode的ack,当接收到所有 datanode对一个packet确认成功的ack,ResponseProcessor从ackQueue中删除相应的packet。在出错时,从 ackQueue中移除packet到dataQueue,移除失败的datanode,恢复数据块,建立新的pipeline。实现如下:
public void run() {
...
PipelineAck ack = new PipelineAck();
while (!closed && clientRunning && !lastPacketInBlock) {
  try {
    // read an ack from the pipeline
    ack.readFields(blockReplyStream);
    ...
    //处理所有DataNode响应的状态
    for (int i = ack.getNumOfReplies()-1; i >=0 && clientRunning; i--) {
        short reply = ack.getReply(i); 
      if (reply != DataTransferProtocol.OP_STATUS_SUCCESS) {//ack验证,如果DataNode写入packet失败,则出错   
        errorIndex = i; //记录损坏的DataNode,会在processDatanodeError方法移除该失败的DataNode
        throw new IOException("Bad response " + reply + " for block " + block +  " from datanode " + targets[i].getName());   
      }  
    }

    long seqno = ack.getSeqno();
    if (seqno == Packet.HEART_BEAT_SEQNO) {  // 心跳ack,忽略
      continue;
    }
    Packet one = null;
    synchronized (ackQueue) {
      one = ackQueue.getFirst();
    }
    ...
    synchronized (ackQueue) {
      assert ack.getSeqno() == lastAckedSeqno + 1;//验证ack
      lastAckedSeqno = ack.getSeqno();
      ackQueue.removeFirst();//移除确认写入成功的packet
      ackQueue.notifyAll();
    }
  } catch (Exception e) {
    if (!closed) {
      hasError = true;//设置ack错误,让
      ...
      closed = true;
    }
  }
}
}
当ResponseProcessor在确认packet失败时,processDatanodeError方法用于处理datanode的错误,当调用返回后需要休眠一段时间时,返回true。下面是其简单的处理流程:
1.关闭blockStream和blockReplyStream
2.将packet从ackQueue移到dataQueue
3.删除坏datanode
4.通过RPC调用datanode的recoverBlock方法来恢复块,如果有错,返回true
5.如果没有可用的datanode,关闭DFSOutputStream和streamer,返回false
6.创建块输出流,如果不成功,转到3
实现如下:
private boolean processDatanodeError(boolean hasError, boolean isAppend) {
  if (!hasError) {//DataNode没有发生错误,直接返回
    return false;
  }
 
  //将未确认写入成功的packets从ack queue移动到data queue的前面
  synchronized (ackQueue) {
    dataQueue.addAll(0, ackQueue);
    ackQueue.clear();
  }

  boolean success = false;
  while (!success && clientRunning) {
    DatanodeInfo[] newnodes = null;
   
    //根据errorIndex确定失败的DataNode,从所有的DataNode nodes移除失败的DataNode,复制到newnodes

    // 通知primary datanode做数据块恢复,更新合适的时间戳
    LocatedBlock newBlock = null;
    ClientDatanodeProtocol primary =  null;
    DatanodeInfo primaryNode = null;
    try {
      // Pick the "least" datanode as the primary datanode to avoid deadlock.
      primaryNode = Collections.min(Arrays.asList(newnodes));
      primary = createClientDatanodeProtocolProxy(primaryNode, conf, block, accessToken, socketTimeout);
      newBlock = primary.recoverBlock(block, isAppend, newnodes);//恢复数据块
    } catch (IOException e) {
        //循环创建块输出流,如果不成功,移除失败的DataNode
          return true;          // 需要休眠
    } finally {
      RPC.stopProxy(primary);
    }
    recoveryErrorCount = 0; // 数据块恢复成功
    block = newBlock.getBlock();
    accessToken = newBlock.getBlockToken();
    nodes = newBlock.getLocations();

    this.hasError = false;
    lastException = null;
    errorIndex = 0;
    success = createBlockOutputStream(nodes, clientName, true);
  }

  response = new ResponseProcessor(nodes);
  response.start();//启动ResponseProcessor做ack确认处理
  return false; // 不休眠,继续处理
}

你可能感兴趣的:(hadoop,hdfs)