建立赫夫曼树以及求赫夫曼编码

 
 
2011-07-08 14:18

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 

#define  n  100                                        //叶子数目

#define  m  2*n-1                       //树中结点总数

typedef struct                                    

{      float weight;                                //权值,不妨设权值均大于零

        int lchild,rchild,parent;             //左右孩子及双亲指针

}HTNode;

typedef HTNode HuffmanTree[m];      //HuffmanTree是向量类型

 

typedef struct

{      char ch;                                    //存储字符

        char bits[n+1];                           //存放编码位串

}CodeNode;

typedef CodeNode HuffmanCode[n];

 

void InitHuffmanTree(HuffmanTree T);        //初始化Huffman

void InputWeight(HuffmanTree T);              //输入权值

void SelectMin(HuffmanTree T,int i,int *p1,int *p2);

 

void main()

{      void CreateHuffmanTree(HuffmanTree T);   //构造Huffman

        void CharSetHuffmanEncoding(HuffmanTree T,HuffmanCode H);

        HuffmanTree T;

        HuffmanCode H;

        CreateHuffmanTree(T);

        CharSetHuffmanEncoding(T,H);

}

 

void CreateHuffmanTree(HuffmanTree T)

{      //构造Huffman树,T[m-1]为其根结点

        int i,p1,p2;

        InitHuffmanTree(T);           //T初始化

        InputWeight(T);                 //输入叶子权值至T[0..n-1]weight

        for(i=n;i<m;i++)         //共进行n-1次合并,新结点依次存于T[i]

        {      SelectMin(T,i-1,&p1,&p2);

                //T[0..i-1]中选择两个权最小的根结点,其序号分别为p1p2

                T[p1].parent=T[p2].parent=i;

                T[i].lchild=p1;            //最小权的根结点是新结点的左孩子

                T[i].rchild=p2;           //次小权的根结点是新结点的右孩子

                T[i].weight=T[p1].weight+T[p2].weight;

        }

}

 

void InitHuffmanTree(HuffmanTree T)

{      //初始化Huffman

        int i;

        for (i=0;i<m;i++)

        {   T[i].weight=0;

                T[i].lchild=T[i].rchild=T[i].parent=NULL;

        }

}

 

void InputWeight(HuffmanTree T)

{      //输入权值

        int i;

        for (i=0;i<n;i++)

        {

                printf("请输入第%d个权值:",i+1);

                scanf("%f",&T[i].weight);

        }

}

 

void SelectMin(HuffmanTree T,int i,int *p1,int *p2)    //T中选择两个权最小的根结点

{      int j;

        float min1,min2;

        min1=min2=-1;

        for(j=0;j<=i;j++)

                if(T[j].parent==NULL)          //排除已经用过的叶子结点,使其不再参加比大小

                { if(T[j].weight<min1||min1==-1)

                        {  if(min1!=-1)

                                 {  min2=min1;

                                    *p2=*p1;

                                 }

                                min1=T[j].weight;

                                *p1=j;

                        }

                        else

                                if(T[j].weight<min2||min2==-1)

                                {      min2=T[j].weight;

                                        *p2=j;

                                }

                }

}

//根据HuffmanTHuffman编码表H  (方法一)

void CharSetHuffmanEncoding(HuffmanTree T,HuffmanCode H)

{      int c,p,i;                            //cp分别指示T中孩子和双亲的位置

        char cd[n+1];                    //临时存放编码

        int start;                            //指示编码在cd中的起始位置

        cd[n]='\0';                         //编码结束符

        printf("请输入字符:");

        for(i=0;i<n;i++)          //依次求叶子T[i]的编码

        {   H[i].ch=getchar();       //读入叶子T[i]对应的字符

                start=n;                     //编码起始位置的初值

                c=i;                           //从叶子T[i]开始上溯

                while((p=T[c].parent)!=NULL)//直至上溯到T[c]是树根为止

                {      //T[c]T[p]的左孩子,则生成代码0;否则生成代码1

                        cd[--start]=(T[p].lchild==c)?'0':'1';

                        c=p;                  //继续上溯

                }

                strcpy(H[i].bits,&cd[start]);                //复制编码位串

        }

        for(i=0;i<n;i++)

                printf("%d个字符%c的编码为%s\n",i+1,H[i].ch,H[i].bits);

}

 

//通过遍历赫夫曼树来求赫夫曼编码  (方法二)

hc=(huffmancode)malloc((n+1)*sizeof(char*));              //分配N个结点

p=m;cdlen=0;

for(i=1;i<m;i++) ht[i].weight=0;  //用作结点的标志

while(p)

{ if(ht[p].weight==0)                   //向左,向左一次后原来的结点的weight值加一

   {ht[weight]=1;

    if(ht[p].lchild!=0)  {p=ht[p].lchild;cd[cdlen++]="0";}

    else if(ht[p].rchild==0)

      {//具体分配用来存储每一个结点的赫夫曼码的大小

hc[p]=(char*)malloc((cdlen++)*sizeof(char));    

      cd[cdlen]="\0";

        strcpy(hc[p],cd);

      }

   }

  else if(ht[p].weight==1)              //向右,向右一次后原来的结点的weight值加一

    {ht[p].weight==2;

     if(ht[p].rchild!=0)  {p=ht[p].rchild;cd[cdlen++]="1";}

    }

  else                              //ht[p].weight==2,退到父结点,编码长度减一

   {ht[p].weight=0; p=ht[p].parent; --cdlen;}  

}

你可能感兴趣的:(建立赫夫曼树以及求赫夫曼编码)