After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, the security system for these houses remain the same as for those in the previous street.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
[思路]这次是对环处理。我们可以把这个问题变换成在直线上处理的子问题。见子问题解法。
因为是环,所以最后一个和第一个不能同时取。
那么这个问题,我们对第一个到倒数第二个求在直线上的解,再对第二个到最后一个求在直线上的解,取最大值即可。
class Solution { public: int rob(vector<int>& nums) { if(nums.size()==1) return nums[0]; return max(RobLine(nums,0,nums.size()-1),RobLine(nums,1,nums.size())); } int RobLine(vector<int> &num,int start,int end ) { if(num.size()==0) return 0; int step1=0; int step2=0; int step3=num[start]; int step4=0; for(int i=start+1;i<end;++i){ step4=max(num[i]+step2,num[i-1]+step1); step1=step2; step2=step3; step3=step4; } return step3; } };