去除成员函数之后,我们看到SkPath包括这几个成员,注释中补充了说明:
class SK_API SkPath {
//SkPath中的主要内容,SkAutoTUnref是自解引用,之所以这么设计,是为了复制SkPath时,省去份量较多的点复制(只复制引用)。
//由一系列线段组成
SkAutoTUnref<SkPathRef> fPathRef;
int fLastMoveToIndex;
uint8_t fFillType;//如下四种类型之一
/*enum FillType {
kWinding_FillType,//绘制所有线段包围成的区域
kEvenOdd_FillType,//绘制被所有线段包围奇数次的区域)
kInverseWinding_FillType,//kWinding_FillType取反,即绘制不在该区域的点
kInverseEvenOdd_FillType//第二种type取反
}*/
mutable uint8_t fConvexity;//凹凸性,临时计算
mutable uint8_t fDirection;//方向,顺时针/逆时针,临时计算
#ifdef SK_BUILD_FOR_ANDROID
const SkPath* fSourcePath;//Hwui中使用,暂不关注
#endif
};
关于 fFillType中 kWinding_FillType和 kEvenOdd_FillType的区别,可看SkPath::contains。这是判断点是否在不规则几何体内的经典代码(),很有参考意义。
SkPathRef的内容如下:class SkPathRef
{
private:
mutable SkRect fBounds;//边界,临时计算
uint8_t fSegmentMask;//表示这个Path含有哪些种类的形状
mutable uint8_t fBoundsIsDirty;//缓存fBounds使用,表示 fBounds是否需要重新计算
mutable SkBool8 fIsFinite; // only meaningful if bounds are valid
mutable SkBool8 fIsOval;
/*skia不使用stl库而采用的一套容器方案,具体不细说,可看下 SkPath::Iter 的实现*/
SkPoint* fPoints; // points to begining of the allocation
uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards)
int fVerbCnt;
int fPointCnt;
size_t fFreeSpace; // redundant but saves computation
SkTDArray<SkScalar> fConicWeights;
mutable uint32_t fGenerationID;
};
2、SkPath的主要类型:
kMove_Verb:表示需要移动起点
kLine_Verb:直线
kQuad_Verb:二次曲线
kConic_Verb:圆锥曲线
kCubic_Verb:三次曲线
kClose_Verb:表闭合到某点
kDone_Verb:表结束
#include "SkPath.h"
#include "SkCanvas.h"
#include "SkBitmap.h"
int main()
{
SkBitmap dst;
dst.allocN32Pixels(1000, 1000);
SkCanvas c(dst);
SkPath path;
/*一个三角形*/
path.moveTo(300,0);
path.lineTo(400,100);
path.lineTo(200,100);
path.close();
/*椭圆*/
SkRect oval;
oval.set(0, 0, 500, 600);
path.addOval(oval);
c.drawPath(path);
return 1;
}
二、drawPath流程
填充算法说明
我们跟进最重要的函数 sk_fill_path,如下为代码:
void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitter,
int start_y, int stop_y, int shiftEdgesUp,
const SkRegion& clipRgn) {
SkASSERT(&path && blitter);
SkEdgeBuilder builder;
int count = builder.build(path, clipRect, shiftEdgesUp);
SkEdge** list = builder.edgeList();
if (count < 2) {
if (path.isInverseFillType()) {
/*
* Since we are in inverse-fill, our caller has already drawn above
* our top (start_y) and will draw below our bottom (stop_y). Thus
* we need to restrict our drawing to the intersection of the clip
* and those two limits.
*/
SkIRect rect = clipRgn.getBounds();
if (rect.fTop < start_y) {
rect.fTop = start_y;
}
if (rect.fBottom > stop_y) {
rect.fBottom = stop_y;
}
if (!rect.isEmpty()) {
blitter->blitRect(rect.fLeft << shiftEdgesUp,
rect.fTop << shiftEdgesUp,
rect.width() << shiftEdgesUp,
rect.height() << shiftEdgesUp);
}
}
return;
}
SkEdge headEdge, tailEdge, *last;
// this returns the first and last edge after they're sorted into a dlink list
SkEdge* edge = sort_edges(list, count, &last);
headEdge.fPrev = NULL;
headEdge.fNext = edge;
headEdge.fFirstY = kEDGE_HEAD_Y;
headEdge.fX = SK_MinS32;
edge->fPrev = &headEdge;
tailEdge.fPrev = last;
tailEdge.fNext = NULL;
tailEdge.fFirstY = kEDGE_TAIL_Y;
last->fNext = &tailEdge;
// now edge is the head of the sorted linklist
start_y <<= shiftEdgesUp;
stop_y <<= shiftEdgesUp;
if (clipRect && start_y < clipRect->fTop) {
start_y = clipRect->fTop;
}
if (clipRect && stop_y > clipRect->fBottom) {
stop_y = clipRect->fBottom;
}
InverseBlitter ib;
PrePostProc proc = NULL;
if (path.isInverseFillType()) {
ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp);
blitter = &ib;
proc = PrePostInverseBlitterProc;
}
if (path.isConvex() && (NULL == proc)) {
walk_convex_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, NULL);
} else {
walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc);
}
}
不考虑 Inverse 的情况,主要就是两步:
(1)生成一系列边:SkEdge
(2)遍历渲染各边所围出来的区域
凸集的渲染比较简单,因为可以保证,任意两条边+闭合线所围成区域一定需要渲染:
(1)取初始的两条边,分别为:左和右。
(2)渲染左右边+闭合边所围成的区域(一般为三角,当两边平行时取矩形)
(3)迭代刷新左右两边(如果是曲线需要刷新多次)
static void walk_convex_edges(SkEdge* prevHead, SkPath::FillType,凹集或者判断不了凹凸性就比较复杂,需要一条线一条线去渲染,每次渲染还得判断奇偶性:
代码如下,不分析了:
static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType,
drawPath是绘制所有不规则形体的函数,带入Bitmap的Shader,可以制作不规则形体的图片。对于凸集,Skia的渲染主要也是切成三角片后渲染,和OpenGL类似。而对于凹集,则是扫描线了。渲染的实现和绘制图片一样,构建Blitter,调用Blitter的blit函数族渲染。
文字绘制
文字绘制主要包括编码转换(主要是中文)、字形解析(点线或image)和实际渲染三个步骤。在这个过程中,字形解析和实际渲染均是耗时步骤。Skia对文字解析的结果做了一套缓存机制。在中文字较多,使用多种字体,绘制的样式(粗/斜体)有变化时,这个缓存会变得很大,因此Skia文字缓存做了内存上的限制。
1、SkPaint
文字绘制与SkPaint的属性相关很大,先回头看下SkPaint相关的属性
class SkPaintSkCanvas
绘制文字和下划线
SkDraw
两种绘制方式:
(1)将文字解析为路径,然后绘制路径,缓存路径(drawText_asPaths)。
void SkDraw::drawText_asPaths(const char text[], size_t byteLength,将文字解析为Mask(32*32的A8图片),然后绘制模板,缓存模板。
SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc();
SkAutoGlyphCache autoCache(paint, &fDevice->fLeakyProperties, fMatrix);
SkGlyphCache* cache = autoCache.getCache();
// transform our starting point
{
SkPoint loc;
fMatrix->mapXY(x, y, &loc);
x = loc.fX;
y = loc.fY;
}
// need to measure first
if (paint.getTextAlign() != SkPaint::kLeft_Align) {
SkVector stop;
measure_text(cache, glyphCacheProc, text, byteLength, &stop);
SkScalar stopX = stop.fX;
SkScalar stopY = stop.fY;
if (paint.getTextAlign() == SkPaint::kCenter_Align) {
stopX = SkScalarHalf(stopX);
stopY = SkScalarHalf(stopY);
}
x -= stopX;
y -= stopY;
}
const char* stop = text + byteLength;
SkAAClipBlitter aaBlitter;
SkAutoBlitterChoose blitterChooser;
SkBlitter* blitter = NULL;
if (needsRasterTextBlit(*this)) {
blitterChooser.choose(*fBitmap, *fMatrix, paint);
blitter = blitterChooser.get();
if (fRC->isAA()) {
aaBlitter.init(blitter, &fRC->aaRgn());
blitter = &aaBlitter;
}
}
SkAutoKern autokern;
SkDraw1Glyph d1g;
SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache, paint);
SkFixed fxMask = ~0;
SkFixed fyMask = ~0;
if (cache->isSubpixel()) {
SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*fMatrix);
if (kX_SkAxisAlignment == baseline) {
fyMask = 0;
d1g.fHalfSampleY = SK_FixedHalf;
} else if (kY_SkAxisAlignment == baseline) {
fxMask = 0;
d1g.fHalfSampleX = SK_FixedHalf;
}
}
SkFixed fx = SkScalarToFixed(x) + d1g.fHalfSampleX;
SkFixed fy = SkScalarToFixed(y) + d1g.fHalfSampleY;
while (text < stop) {
const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask);
fx += autokern.adjust(glyph);
if (glyph.fWidth) {
proc(d1g, fx, fy, glyph);
}
fx += glyph.fAdvanceX;
fy += glyph.fAdvanceY;
}
cacheProc是翻译字符编码的函数,由SkPaint::getDrawCacheProc产生:
SkDrawCacheProc SkPaint::getDrawCacheProc() const {
static const SkDrawCacheProc gDrawCacheProcs[] = {
sk_getMetrics_utf8_00,
sk_getMetrics_utf16_00,
sk_getMetrics_utf32_00,
sk_getMetrics_glyph_00,
sk_getMetrics_utf8_xy,
sk_getMetrics_utf16_xy,
sk_getMetrics_utf32_xy,
sk_getMetrics_glyph_xy
};
unsigned index = this->getTextEncoding();
if (fFlags & kSubpixelText_Flag) {
index += 4;
}
SkASSERT(index < SK_ARRAY_COUNT(gDrawCacheProcs));
return gDrawCacheProcs[index];
}
SkGlyphCache:
字形解析的结果缓存。
SkScalerContext:
负责字形的解析,有多种实现。Android中是用FreeType:SkScalerContext_FreeType。主要是generateImage和generatePath两个方法:
generateImage:
void SkScalerContext_FreeType::generateImage(const SkGlyph& glyph) {generatePath:
void SkScalerContext_FreeType::generatePath(const SkGlyph& glyph,
SkPath* path) {
SkAutoMutexAcquire ac(gFTMutex);
SkASSERT(&glyph && path);
if (this->setupSize()) {
path->reset();
return;
}
uint32_t flags = fLoadGlyphFlags;
flags |= FT_LOAD_NO_BITMAP; // ignore embedded bitmaps so we're sure to get the outline
flags &= ~FT_LOAD_RENDER; // don't scan convert (we just want the outline)
FT_Error err = FT_Load_Glyph( fFace, glyph.getGlyphID(fBaseGlyphCount), flags);
if (err != 0) {
SkDEBUGF(("SkScalerContext_FreeType::generatePath: FT_Load_Glyph(glyph:%d flags:%d) returned 0x%x\n",
glyph.getGlyphID(fBaseGlyphCount), flags, err));
path->reset();
return;
}
emboldenIfNeeded(fFace, fFace->glyph);
generateGlyphPath(fFace, path);
// The path's origin from FreeType is always the horizontal layout origin.
// Offset the path so that it is relative to the vertical origin if needed.
if (fRec.fFlags & SkScalerContext::kVertical_Flag) {
FT_Vector vector;
vector.x = fFace->glyph->metrics.vertBearingX - fFace->glyph->metrics.horiBearingX;
vector.y = -fFace->glyph->metrics.vertBearingY - fFace->glyph->metrics.horiBearingY;
FT_Vector_Transform(&vector, &fMatrix22);
path->offset(SkFDot6ToScalar(vector.x), -SkFDot6ToScalar(vector.y));
}
}
3、字体缓存管理
SkTypeface是Skia中的字体类,对应可有多种字体库解析实现。
由于Android上面使用的是FreeType,因此也只讲FreeType分支。
SkTypeface* SkTypeface::CreateFromStream(SkStream* stream) {
return SkFontHost::CreateTypefaceFromStream(stream);
}
bool find_name_and_attributes(SkStream* stream, SkString* name,
SkTypeface::Style* style, bool* isFixedPitch) {
FT_Library library;
if (FT_Init_FreeType(&library)) {
return false;
}
FT_Open_Args args;
memset(&args, 0, sizeof(args));
const void* memoryBase = stream->getMemoryBase();
FT_StreamRec streamRec;
if (NULL != memoryBase) {
args.flags = FT_OPEN_MEMORY;
args.memory_base = (const FT_Byte*)memoryBase;
args.memory_size = stream->getLength();
} else {
memset(&streamRec, 0, sizeof(streamRec));
streamRec.size = stream->getLength();
streamRec.descriptor.pointer = stream;
streamRec.read = sk_stream_read;
streamRec.close = sk_stream_close;
args.flags = FT_OPEN_STREAM;
args.stream = &streamRec;
}
FT_Face face;
if (FT_Open_Face(library, &args, 0, &face)) {
FT_Done_FreeType(library);
return false;
}
int tempStyle = SkTypeface::kNormal;
if (face->style_flags & FT_STYLE_FLAG_BOLD) {
tempStyle |= SkTypeface::kBold;
}
if (face->style_flags & FT_STYLE_FLAG_ITALIC) {
tempStyle |= SkTypeface::kItalic;
}
if (name) {
name->set(face->family_name);
}
if (style) {
*style = (SkTypeface::Style) tempStyle;
}
if (isFixedPitch) {
*isFixedPitch = FT_IS_FIXED_WIDTH(face);
}
FT_Done_Face(face);
FT_Done_FreeType(library);
return true;
}
当绘制字体只绘边界或者位图缓存机制不好处理时,将字体解析成点线,构成SkPath,也做缓存。