Smallest Sub-Array Input: Standard Input Output: Standard Output |
Consider an integer sequence consisting of N elements where –
X1 = 1
X2 = 2
X3 = 3
Xi = (Xi-1 + Xi-2 + Xi-3) % M + 1 for i = 4 to N
Find 2 values a and b so that the sequence (Xa Xa+1 Xa+2 ... Xb-1 Xb) contains all the integers from [1,K]. If there are multiple solutions then make sure (b-a) is as low as possible.
In other words, find the smallest subsequence from the given sequence that contains all the integers from 1 to K.
Consider an example where N = 20, M = 12 and K = 4.
The sequence is {1 2 3 7 1 12 9 11 9 6 3 7 5 4 5 3 1 10 3 3}.
The smallest subsequence that contains all the integers {1 2 3 4} has length 13 and is highlighted in the following sequence:
{1 2 3 7 1 12 9 11 9 6 3 7 5 4 5 3 1 10 3 3}.
First line of input is an integer T(T<100) that represents the number of test cases. Each case consists of a line containing 3 integers N(2 <N < 1000001), M(0 < M < 1001) and K(1< K < 101). The meaning of these variables is mentioned above.
For each case, output the case number followed by the minimum length of the subsequence. If there is no valid subsequence, output “sequence nai” instead. Look at the sample for exact format.
2 20 12 4 20 12 8 |
Case 1: 13 Case 2: sequence nai |
Problemsetter: Sohel Hafiz
Special Thanks: Md. Arifuzzaman Arif
#include <cstdio> #include <algorithm> #include <vector> #include <map> #include <queue> #include <iostream> #include <stack> #include <set> #include <cstring> #include <stdlib.h> #include <cmath> using namespace std; typedef long long LL; typedef pair<int, int> P; const int maxn = 1000000 + 5; const int INF = 1000000000; int n, m, k; int x[maxn]; int vis[maxn]; void pre(){ x[1] = 1;x[2] = 2;x[3] = 3; for(int i = 4;i <= n;i++) x[i] = (x[i-1]+x[i-2]+x[i-3])%m+1; } int main(){ int t, kase = 0; scanf("%d", &t); while(t--){ kase++; scanf("%d%d%d", &n, &m, &k); pre(); memset(vis, 0, sizeof(vis)); int pos = 1; int ans = INF; int cnt = 0; for(int i = 1;i <= n;i++){ vis[x[i]]++; if(x[i] <= k && vis[x[i]] == 1) cnt++; while(vis[x[pos]] > 1 || x[pos] > k){// x[pos]>k !!! vis[x[pos]]--; pos++; } if(cnt == k) ans = min(ans, i-pos+1); } if(ans != INF) printf("Case %d: %d\n", kase, ans); else printf("Case %d: sequence nai\n", kase); } return 0; }