用递归和非递归两种办法计算Hanoi问题

递归方法就是通常的方法。
非递归方法是:
循环移动最小的盘子,然后再移动不包括最小盘子的两根杆上的盘子(比较大小),直到结束。根据移动盘子个数是奇数或偶数确定先移动到那个杆上,是123循环,还是321循环,详情见程序。
// Hanoi.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream.h>
#include <stack>
#include <map>
using namespace std;

void Move(int nFrom,int nTo);
void Hanoi1(int nNums,int nFrom,int nThrough,int nTo);
void Hanoi2(int nNums,int nFrom,int nThrough,int nTo);

int main(int argc, char* argv[])
{
 cout<<"begining...."<<endl;
 Hanoi1(4,1,2,3);
 cout<<"begining2...."<<endl;
 Hanoi2(4,1,2,3);
 return 0;
}

void Move(int nFrom,int nTo)
{
 cout<< "move from peg "<<nFrom << " to peg " << nTo << endl;
}

void Hanoi1(int nNums,int nFrom,int nThrough,int nTo)
{
 if(1==nNums) {
  Move(nFrom,nTo);
 }
 else {
  Hanoi1(nNums-1,nFrom,nTo,nThrough);
  Move(nFrom,nTo);
  Hanoi1(nNums-1,nThrough,nFrom,nTo);
 }
}

 

void Hanoi2(int nNums,int nFrom,int nThrough,int nTo)
{
 stack<int> peg[3]; 
 map<int,int> amap;
 amap.insert(map<int,int>::value_type(0,nFrom));
 amap.insert(map<int,int>::value_type(1,nThrough));
 amap.insert(map<int,int>::value_type(2,nTo));
 int i;
 for(i=nNums;i>=1;i--) peg[0].push(i);

 int nDirection=(nNums % 2)?-1:1;
 bool bSmallMove=true;
 int nSmallest=0;
 int nSmallestNext;
 while (peg[2].size()!=nNums)
 {
  if (bSmallMove)
  {
   nSmallestNext=(nSmallest+nDirection+3) % 3;
   peg[nSmallest].pop();
   peg[nSmallestNext].push(1);
   Move(amap[nSmallest],amap[nSmallestNext]);
   nSmallest=nSmallestNext;
  }
  else
  {
   int k,indice[2],count; 
   count=0;
   for(k=0;k<3;k++)
   {
    if (peg[k].empty()) {
     indice[count]=k;
     count++;
     continue;
    }
    if (peg[k].top()==1) continue;
    indice[count]=k;
    count++;
   }

   if( !( peg[indice[0]].empty() || peg[indice[1]].empty() ) )
   {
    if (peg[indice[0]].top()>peg[indice[1]].top())
    {
     k=indice[0];
     indice[0]=indice[1];
     indice[1]=k;
    }

   }
   else if (peg[indice[0]].empty())
   {
    k=indice[0];
    indice[0]=indice[1];
    indice[1]=k;
   }
   
   k=peg[indice[0]].top();
   peg[indice[0]].pop();
   peg[indice[1]].push(k);
   Move(amap[indice[0]],amap[indice[1]]);   
   
  }
  bSmallMove=!bSmallMove;
 } //while
}

 

你可能感兴趣的:(用递归和非递归两种办法计算Hanoi问题)