题目大意:给出平面上的一些点,求其中四个点的最大四边形的面积。
思路:简单yy一下发现这些点肯定都在凸包上,先求个凸包。然后直接暴力肯定是不行的,我们需要一个O(n^2)的做法,比较简单的想法是枚举最后要求的四边形的一条对线,那么这个四边形就被分割成了两个三角形,剩下两个点与这条线组成的三角形的面积和就是答案。
按照旋转卡壳的思想不难发现,这两个点都是单调的。所以枚举对角线然后扫n圈就可以了。
CODE:
#define _CRT_SECURE_NO_DEPRECATE #include <cmath> #include <cstdio> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define MAX 10010 #define INF 1e15 using namespace std; struct Point{ double x,y; Point(double _,double __):x(_),y(__) {} Point() {} bool operator <(const Point &a)const { return x == a.x ? (y < a.y) : (x < a.x); } Point operator -(const Point &a)const { return Point(x - a.x,y - a.y); } void Read() { scanf("%lf%lf",&x,&y); } }point[MAX]; inline double Cross(const Point &p1,const Point &p2) { return p1.x * p2.y - p1.y * p2.x; } inline double Calc(const Point &p1,const Point &p2) { return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y)); } int points,top; Point stack[MAX]; int lines; inline void Add(const Point &a,int bottom) { while(top != bottom && Cross(a - stack[top - 1],stack[top] - stack[top - 1]) >= 0) --top; stack[++top] = a; } double RotatingCaliper() { double re = .0; for(int i = 0; i < top; ++i) { int p1 = 1,p2 = 1; for(int j = i + 1; j < top; ++j) { while(Cross(stack[p1 + 1] - stack[i],stack[j] - stack[i]) > Cross(stack[p1] - stack[i],stack[j] - stack[i])) p1 = (p1 + 1) % top; while(Cross(stack[j] - stack[i],stack[p2 + 1] - stack[i]) > Cross(stack[j] - stack[i],stack[p2] - stack[i])) p2 = (p2 + 1) % top; re = max(re,Cross(stack[p1] - stack[i],stack[j] - stack[i]) + Cross(stack[j] - stack[i],stack[p2] - stack[i])); } } return re / 2; } int main() { cin >> points; for(int i = 1; i <= points; ++i) point[i].Read(); sort(point + 1,point + points + 1); stack[++top] = point[1]; for(int i = 2; i <= points; ++i) Add(point[i],1); int temp = top; for(int i = points - 1; i >= 1; --i) Add(point[i],temp); --top; stack[0] = stack[top]; cout << fixed << setprecision(3) << RotatingCaliper() << endl; return 0; }