题意:给一个长度为n的数组a[n],然后定义mex[l,r]为[l,r]这个区间内最小的非负整数,然后求sum(mex[l,r])(1<=l<=r<=n)
先求出mex[1,1]~mex[1,n]的值,然后枚举删掉a[i]后的变化
首先可以知道mex[1,1]~mex[1,n]为非递减的
如果删掉a[1],那么mex[2,2]~mex[2,n]的变化为,下一个a[1]出现前大于a[1]的都要变为a[1],又因为其是非递减的,所以可以找到第一个mex值大于a[i]的那个位置到下一个出现a[1]的位置之前的这段区间赋值为a[1],然后线段树求和就行了。
//author: CHC
//First Edit Time: 2015-07-20 21:09
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <algorithm>
#include <limits>
using namespace std;
typedef long long LL;
const int MAXN=200000+1000;
const int INF = numeric_limits<int>::max();
const LL LL_INF= numeric_limits<LL>::max();
#define lson L,mid,rt<<1
#define rson mid+1,R,rt<<1|1
struct Tree {
LL sum;
LL Ma;
int flag;
LL v;
}tr[MAXN<<2];
void pushup(int rt){
tr[rt].sum=tr[rt<<1].sum+tr[rt<<1|1].sum;
tr[rt].Ma=max(tr[rt<<1].Ma,tr[rt<<1|1].Ma);
}
void pushdown(int L,int R,int rt){
if(L==R)return ;
int mid=(L+R)>>1;
if(tr[rt].flag){
tr[rt<<1].sum=(L-mid+1)*tr[rt].v;
tr[rt<<1|1].sum=(R-(mid+1)+1)*tr[rt].v;
tr[rt<<1].v=tr[rt<<1|1].v=tr[rt].v;
tr[rt<<1].Ma=tr[rt<<1|1].Ma=tr[rt].v;
tr[rt<<1].flag=tr[rt<<1|1].flag=1;
tr[rt].flag=0;
tr[rt].v=0;
}
}
LL A[MAXN];
void build(int L,int R,int rt){
memset(&tr[rt],0,sizeof(Tree));
if(L==R){
tr[rt].sum=A[L];
tr[rt].Ma=A[L];
return ;
}
int mid=(L+R)>>1;
build(lson);build(rson);
pushup(rt);
}
void update(int L,int R,int rt,int l,int r,LL v){
pushdown(L,R,rt);
if(l<=L&&R<=r){
tr[rt].sum=v*(R-L+1);
tr[rt].v=v;
tr[rt].Ma=v;
tr[rt].flag=1;
return ;
}
int mid=(L+R)>>1;
if(l<=mid)update(lson,l,r,v);
if(r>mid)update(rson,l,r,v);
pushup(rt);
}
LL query(int L,int R,int rt,int l,int r,int flag){
//printf("%d %d %d %d %d\n",L,R,rt,l,r);
//system("pause");
pushdown(L,R,rt);
if(l<=L&&R<=r){
//printf("%d %d %I64d\n",L,R,tr[rt].sum);
if(flag==0)return tr[rt].Ma;
else return tr[rt].sum;
}
int mid=(L+R)>>1;
LL ans=0;
if(l<=mid){
if(flag==0)ans=max(ans,query(lson,l,r,flag));
else ans+=query(lson,l,r,flag);
}
if(r>mid){
if(flag==0)ans=max(ans,query(rson,l,r,flag));
else ans+=query(rson,l,r,flag);
}
pushup(rt);
return ans;
}
int resl,resr;
LL queryp(int L,int R,int rt,int l,int r,LL v){
//printf("%d %d %I64d\n",L,R,tr[rt].Ma);
pushdown(L,R,rt);
int mid=(L+R)>>1;
if(l<=L&&R<=r){
if(tr[rt].Ma<=v)return -1;
if(L==R)return L;
if(resl!=-1&&(resr<L))return -1;
resl=L;resr=R;
if(tr[rt<<1].Ma>v){
return queryp(lson,l,r,v);
}
else return queryp(rson,l,r,v);
}
int ansl=-1,ansr=-1;
if(l<=mid)ansl=queryp(lson,l,r,v);
if(r>mid)ansr=queryp(rson,l,r,v);
if(ansl==-1)return ansr;
if(ansr==-1)return ansl;
return min(ansl,ansr);
}
LL B[MAXN];
int n;
int pre[MAXN],vis[MAXN];
struct node {
LL val;
int pos;
}cs[MAXN];
int cmp(const node &x,const node &y){
if(x.val!=y.val)return x.val<y.val;
return x.pos<y.pos;
}
int main()
{
while(~scanf("%d",&n)){
if(n==0)break;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)scanf("%I64d",&B[i]);
LL s=0;
for(int i=1;i<=n;i++){
if(B[i]<=n)vis[B[i]]=1;
while(vis[s])++s;
A[i]=s;
//printf("%I64d ",A[i]);
}
//puts("");
memset(pre,-1,sizeof(pre));
for(int i=1;i<=n;i++)cs[i].val=B[i],cs[i].pos=i;
sort(cs+1,cs+1+n,cmp);
for(int i=1;i<n;i++){
if(cs[i].val==cs[i+1].val)pre[cs[i].pos]=cs[i+1].pos;
}
//for(int i=1;i<=n;i++)printf("%d ",pre[i]);
//puts("");
build(1,n,1);
LL ans=query(1,n,1,1,n,1);
for(int i=2;i<=n;i++){
resl=resr=-1;
int pos1=queryp(1,n,1,i,n,B[i-1]);
int pos2=pre[i-1];
if(pos1!=-1){
if(pos2==-1){
update(1,n,1,pos1,n,B[i-1]);
}
else {
update(1,n,1,pos1,pos2-1,B[i-1]);
}
}
ans+=query(1,n,1,i,n,1);
}
printf("%I64d\n",ans);
}
return 0;
}