Bob has n matches. He wants to compose numbers using the following scheme (that is, digit 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 needs 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 matches):
Write a program to make a non-negative integer which is a multiple of m. The integer should be as big as possible.
The input consists of several test cases. Each case is described by two positive integers n (n100) and m (m3000), as described above. The last test case is followed by a single zero, which should not be processed.
For each test case, print the case number and the biggest number that can be made. If there is no solution, output -1. Note that Bob don't have to use all his matches.
6 3 5 6 0
Case 1: 111 Case 2: -1
N个火柴能组成被M整除的最大的数是多少。
dp[i][j]表示用i个火柴整除M余j的最大的数,v[k]表示组成数字k要几个火柴,dp[i+v[k]][(j*10+k)%M]=max(dp[i+v[k]][(j*10+k)%M],dp[i][j]*10+k),我们一般循环算dp的时候都是从前面算出的状态来更新当前状态,而这个是拿当前状态去更新后面的状态,其实是一样的,到当前状态的时候它已经被前面所有能更新它的更新过。而且这个题这样做的好处在于i+v[k]个火柴的余数就是(j*10+k)%M,而如果i-v[k]的余数就不好算了。
这个题可能有50位数,要用大数。书上说可以不用大数,这个还真没想出来怎么弄。。
#include<cstring> #include<cstdio> #include<iostream> #include<climits> #include<cmath> #include<algorithm> #include<queue> #include<map> #define INF 0x3f3f3f3f #define MAXN 110 #define MAXM 3010 using namespace std; int N,M; int v[10]={6,2,5,5,4,5,6,3,7,6}; char dp[MAXN][MAXM][60],ans[60],s[60]; int compare(char *a,char *b){ int la=strlen(a),lb=strlen(b); if(la>lb) return 1; else if(la<lb) return -1; return strcmp(a,b); } void DP(char *a,char *b,int k){ strcpy(s,b); int l=strlen(s); if(l==1&&s[0]=='0'){ s[l-1]='0'+k; s[l]=0; } else{ s[l]='0'+k; s[l+1]=0; } if(compare(s,a)>0) strcpy(a,s); } int main(){ //freopen("in.txt","r",stdin); int cas=0; while(scanf("%d",&N),N){ scanf("%d",&M); memset(dp,0,sizeof(dp)); dp[0][0][0]='0'; for(int i=0;i<=N;i++) for(int j=0;j<M;j++) if(strlen(dp[i][j])>0){ for(int k=0;k<10;k++) DP(dp[i+v[k]][(j*10+k)%M],dp[i][j],k); } ans[0]=0; for(int i=N;i>0;i--) if(compare(ans,dp[i][0])<0) strcpy(ans,dp[i][0]); printf("Case %d: ",++cas); if(ans[0]==0) puts("-1"); else puts(ans); } return 0; }