一个有向无环图,要求用最少的不相交路径覆盖所有的点,多解使路径权和最小。把每个点拆分成入点和出点,原图中的边a到b,对应为aout到bin,然后跑费用流。这样匹配,每一个没有被匹配过的入点,就意味着必须有一条路径以它为起点。
#include<cstdio> #include<map> #include<queue> #include<cstring> #include<iostream> #include<algorithm> #include<vector> #include<list> #include<set> #include<cmath> using namespace std; const int maxn = 1e3 + 5; const int INF = 1e9; const double eps = 1e-6; typedef unsigned long long ULL; typedef long long LL; typedef pair<int, int> P; #define fi first #define se second struct Edge { int from, to, cap, flow, cost; }; struct MCMF { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int inq[maxn]; // 是否在队列中 int d[maxn]; // Bellman-Ford,单位流量的费用 int p[maxn]; // 上一条弧 int a[maxn]; // 可改进量 void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back((Edge){from, to, cap, 0, cost}); edges.push_back((Edge){to, from, 0, 0, -cost}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int s, int t, int &flow,int &cost) { for(int i = 0; i < n; i++) d[i] = INF; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> Q; Q.push(s); while(!Q.empty()) { int u = Q.front(); Q.pop(); inq[u] = 0; for(int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == INF) return false;//s-t不连通,失败退出 flow += a[t]; cost += d[t] * a[t]; int u = t; while(u != s) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } // 需要保证初始网络中没有负权圈 int Mincost(int s, int t, int& flow) { int cost = 0; while(BellmanFord(s, t,flow, cost)); return cost; } void print(int total){ for(int i = total;i >= 1;i--){ int e = G[i+total][0]; int f = edges[e].flow; if(f == 0){ vector<int> path; path.clear(); path.push_back(i); int pos = i; int tag = 1; while(tag){ tag = 0; for(int u = 0;u < G[pos].size();u++){ int e = G[pos][u]; int f = edges[e].flow; if(f != 0 && edges[e].to > total){ pos = edges[e].to-total; path.push_back(pos); tag = 1; break; } } } printf("%d", path.size()); for(int j = 0;j < path.size();j++){ printf(" %d", path[j]); } puts(""); } } } }; MCMF solver; int main(){ int n, m; while(scanf("%d%d", &n, &m) != EOF){ solver.init(2*n+5); int source = 0, sink = 2*n+1; for(int i = 1;i <= n;i++){ solver.AddEdge(source, i, 1, 0); solver.AddEdge(i+n, sink, 1, 0); } while(m--){ int x, y, c; scanf("%d%d%d", &x, &y, &c); solver.AddEdge(x, y+n, 1, c); } int flow = 0; int cost = solver.Mincost(source, sink, flow); printf("%d %d\n", n-flow, cost); solver.print(n); } return 0; }