题目大意:给出平面上的一些点,求到一个点的最远的第k个点的标号。
思路:朴素的K-D树建树,然后在搜索的时候维护一个小跟堆,保留着最大的k个点,然后吧第k大的点作为基准点来判断是否更新其他的点。
CODE:
#include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 100010 #define INF 0x3f3f3f3f using namespace std; int dim; struct Point{ long long x,y; int id; Point(long long _ = 0,long long __ = 0):x(_),y(__) {} bool operator <(const Point &a)const { if(dim) return x < a.x; return y < a.y; } void Read(int p) { scanf("%lld%lld",&x,&y); id = p; } }point[MAX]; inline long long Calc(const Point &p1,const Point &p2) { return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } struct KDTree{ KDTree *son[2]; Point root; long long x0,y0,x1,y1; KDTree(KDTree *_,KDTree *__,Point ___) { son[0] = _,son[1] = __; root = ___; x0 = x1 = ___.x; y0 = y1 = ___.y; } KDTree() {} void Maintain(KDTree *a) { x0 = min(x0,a->x0); x1 = max(x1,a->x1); y0 = min(y0,a->y0); y1 = max(y1,a->y1); } long long Dis(const Point &p) { long long re = 0; re = max(re,Calc(p,Point(x0,y0))); re = max(re,Calc(p,Point(x1,y0))); re = max(re,Calc(p,Point(x1,y1))); re = max(re,Calc(p,Point(x0,y1))); return re; } }*root,none,*nil = &none; struct Complex{ long long dis; int id; Complex(long long _,int __):dis(_),id(__) {} bool operator <(const Complex &a)const { if(dis == a.dis) return id < a.id; return dis > a.dis; } }; int cnt,asks; KDTree *BuildTree(int l,int r,int d) { if(l > r) return nil; dim = d; int mid = (l + r) >> 1; nth_element(point + l,point + mid,point + r + 1); KDTree *re = new KDTree(BuildTree(l,mid - 1,!d),BuildTree(mid + 1,r,!d),point[mid]); if(re->son[0] != nil) re->Maintain(re->son[0]); if(re->son[1] != nil) re->Maintain(re->son[1]); return re; } priority_queue<Complex> q; void Ask(KDTree *a,const Point &p) { long long dis = Calc(p,a->root); Complex temp(dis,a->root.id); if(temp < q.top()) { q.push(temp); q.pop(); } long long l = a->son[0] == nil ? -1:a->son[0]->Dis(p); long long r = a->son[1] == nil ? -1:a->son[1]->Dis(p); if(l > r) { if(a->son[0] != nil) Ask(a->son[0],p); if(a->son[1] != nil && r >= q.top().dis) Ask(a->son[1],p); } else { if(a->son[1] != nil) Ask(a->son[1],p); if(a->son[0] != nil && l >= q.top().dis) Ask(a->son[0],p); } } int main() { cin >> cnt; for(int i = 1; i <= cnt; ++i) point[i].Read(i); root = BuildTree(1,cnt,0); cin >> asks; for(int k,i = 1; i <= asks; ++i) { Point p; p.Read(0); scanf("%d",&k); while(!q.empty()) q.pop(); for(int i = 1; i <= k; ++i) q.push(Complex(-INF,0)); Ask(root,p); printf("%d\n",q.top().id); } return 0; }