- LabVIEW基于双通道FFT共轭相乘的噪声抑制
LabVIEW开发
LabVIEW知识LabVIEW参考程序LabVIEW功能LabVIEW伺服阀
对于双通道采集的含噪信号,通过FFT获取复数频谱后,对第二通道频谱取共轭并与第一通道频谱相乘,理论上可增强相关信号成分并抑制非相关噪声。此方法适用于通道间信号高度相关、噪声独立的场景(如共模干扰抑制)。以下为LabVIEW实现方案及案例验证。实现原理与步骤1.核心数学推导设两通道信号为:通道1:S1(t)=Signal(t)+Noise1(t)通道2:S2(t)=Signal(t)+Noise2(
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- 《基于文本挖掘的青岛市民宿评论分析系统设计与实现》开题报告
Python数据分析与机器学习
毕业论文/研究报告数据挖掘数据分析人工智能算法
目录一、选题依据:1.研究背景2.理论意义3.现实意义4.国内外研究现状、水平及发展趋势简述(1)国外研究现状(2)国内研究现状(3)发展趋势二、研究内容1.主要研究内容2.研究方法(1)文献研究法(2)数据挖掘法3.技术路线4.实施方案(1)数据采集与预处理(2)设置LDA主题模型(3)情感分析(4)系统集成与可视化5.可行性分析三、主要参考文献一、选题依据:1.研究背景当下,社会经济蓬勃发展,
- 主成分回归(PCR)与特征值因子筛选:从理论到MATLAB实战
青橘MATLAB学习
多元分析回归matlab线性代数数学建模算法
内容摘要:本文深入解析主成分回归(PCR)的原理与MATLAB实现,结合Hald水泥数据案例对比PCR与普通回归的性能差异。详细讲解特征值筛选策略(累积贡献率、交叉验证),并提供单参数估计优化方法。通过完整代码与可视化结果,助力读者掌握高维数据建模与多重共线性处理技巧。关键词:主成分回归特征值筛选多重共线性MATLAB实现交叉验证—1.主成分回归(PCR)概述主成分回归(PrincipalComp
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- Eigen3的库使用
憨憨2号
Eigen3c++
文章目录eigen3lib的使用向量向量一元操作向量二元操作共轭矩阵矩阵赋值转置矩阵块操作取行取列取任意大小的块矩阵分解Cholesky分解坐标变换坐标轴旋转旋转矩阵旋转四元数欧拉角旋转向量数据类型转化double数字转化为矩阵eigen3lib的使用向量Eigen::Vector3fu;//3行*1列列向量向量一元操作u.norm();//向量的模u.transpose()//向量的转置向量二元
- 音频进阶学习九——离散时间傅里叶变换DTFT
山河君
#语音信号处理学习信号处理
文章目录前言一、DTFT的解释1.DTFT公式2.DTFT右边释义1)复指数e−jωne^{-j\omegan}e−jωn2)序列与复指数相乘x[n]∗e−jωnx[n]*e^{-j\omegan}x[n]∗e−jωn复指数序列复数的共轭正交正交集3)复指数序列求和3.DTFT左边边释义1)实部与虚部2)幅度与相位二、IDTFT1.逆离散时间的傅里叶变换2.IDTFT验证总结前言按照傅里叶发展的历
- 组合导航中Kalman滤波算法相关知识简述
十八与她
捷联惯导算法与组合导航原理算法机器学习人工智能组合导航惯导
组合导航中Kalman滤波算法相关知识简述温馨提示:阅读本篇博文内容,需要读者具备一定的Kalman滤波基础知识上图即为Kalman滤波算法的框架,分为预测(时间更新)和更新(量测更新)两部分,其参数估计的过程就是两者循环迭代的过程。预报,就是根据系统状态方程,从前一时刻状态预测当前时刻的状态的过程,可理解成对系统的先验知识的一种推算。预报中,状态估计和它的方差协方差阵也要给出,从方差协方差阵P的
- 复变函数与积分变换中的英汉单词对照
River Chandler
物理学与工程学专业英语中英文对照复变函数
复数与复变函数复数complexnumber实部realnumber虚部imaginaryunit纯虚数pureimaginarynumber共轭复数complexconjugatenumber运算operation减法subtraction乘法multiplication除法division复平面complexplane分配律distributerule交换律exchangerule复合函数co
- 【Eigen教程】矩阵操作(三)
十年一梦实验室
矩阵算法线性代数
3.1矩阵运算向下取整向上取整四舍五入正弦余弦正切反正弦反余弦反正切双曲正弦双曲余弦双曲正切有限值检查无穷大检查NaN检查最小值最大值自然对数常用对数指数平方根平方立方幂运算乘法绝对值转置共轭矩阵乘法点积叉积标量乘法标量除法加法减法3.1.1矩阵的加减运算3.1.2标量乘除法3.1.3乘法、点积和叉积3.1.4转置和共轭3.1.5系数运算3.1.6幂和根3.1.7对数和指数3.1.8两个矩阵的最小
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- Alkyne-choline,685082-61-5
星贝爱科
Alkyne-choline685082-61-5
物理化学性质Alkyne-choline为棕色油状物质,需要密封避光,储存于阴凉、干燥、通风良好的库房中。它溶于大部分有机溶剂,也溶于水。结构式:概况Alkyne-choline是一种含有炔基基团的试剂,主要用于ClickChemistry。这种试剂可以通过铜催化的点击化学与多种叠氮化合物共轭。Alkyne-choline的分子式为C7H14NO+,分子量为128.19。注意事项在使用Alkyne
- 2-85 基于matlab的FrFT下时变幅度LFM信号参数估计
'Matlab学习与应用
matlab工程应用matlab人工智能算法一维插值峰值搜索方式二维峰值搜索算法下时变幅度LFM信号参数估计FrFT
基于matlab的FrFT下时变幅度LFM信号参数估计,输入高斯白噪声LFM信号(信噪比可定义),采用二维峰值搜索算法及一维插值峰值搜索方式提供计算速度,输出LFM信号参数估计结果。程序已调通,可直接运行。2-85一维插值峰值搜索方式-小红书(xiaohongshu.com)
- 实践-python简单实现参数估计
HenlyX
作业:https://mp.weixin.qq.com/s/8egc4QE6MmME0AS4FKSlOg下面动手实践主要是借鉴:https://blog.csdn.net/polarislove36/article/details/78922045?utm_source=blogxgwz4https://blog.csdn.net/maplepiece1999/article/details/10
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 一些可能很有用的矩阵知识
黑洞是不黑
transformer数学理论矩阵线性代数人工智能
一些可有可无的矩阵知识酉矩阵酉矩阵一个服从正态分布的向量乘以一个酉矩阵,得到的向量仍然服从正态分布酉矩阵是一个复数矩阵,满足其转置的共轭等于其逆矩阵。当一个向量通过一个酉矩阵进行线性变换时,它的模长保持不变,只是发生了旋转和缩放。这意味着如果原始向量服从正态分布,变换后的向量仍将服从相同的正态分布。proof:proof:proof:当一个向量服从正态分布时,其概率密度函数(PDF)可以表示为:f
- 共轭矩阵
姜希成
数学概念
共轭矩阵埃尔米特矩阵又称自共轭矩阵、Hermite阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等(然而矩阵A的共轭矩阵并非Hermite阵)。自共轭矩阵是矩阵本身先转置再把矩阵中每个元素取共轭得到的矩阵。当A=(aij)为复矩阵时,用a¯¯¯a¯表示a的共轭复数,记A¯¯¯¯=(aji¯¯¯¯¯¯)A¯=(aji¯),则A¯¯¯¯A¯为A的共轭矩阵。埃尔米特矩阵(或
- 基于 LDA SS-NMF 的文本主题分析可视化分析系统 毕业设计 附完整代码
程序员奇奇
计算机毕设课程设计python人工智能LDA主题分析
摘要在机器学习和自然语言处理领域中,主题模型(TopicModel)是在一系列文档中发现抽象主题的一种统计模型,并被广泛地应用于文本文档集合的分析。近年来,各种主题建模技术,特别是概率图建模技术,取得了显著的进展,其中隐含狄利克雷分布(LDA)等最先进的技术已经成功地应用于可视化文本分析。然而,大多数基于概率模型的方法在多次运行的一致性和经验收敛性方面存在缺陷。此外,由于公式和算法的复杂性,LDA
- 数学基础 -- 线性代数之酉矩阵
sz66cm
量子计算线性代数
酉矩阵(UnitaryMatrix)酉矩阵是线性代数中一种重要的矩阵类型,特别在量子力学和信号处理等领域有广泛的应用。以下是酉矩阵的定义、性质以及使用和计算的例子。1.定义酉矩阵是一个复矩阵UUU,满足以下条件:U†U=UU†=IU^{\dagger}U=UU^{\dagger}=IU†U=UU†=I其中:U†U^{\dagger}U†是矩阵UUU的共轭转置矩阵,即UUU的转置矩阵再取元素的共轭。
- 利用Python处理合成孔径雷达(SAR)数据的成像过程
wavemenu
python开发语言
本文介绍了利用Python处理合成孔径雷达(SAR)数据的完整成像流程,包括数据加载、基本定义、聚焦、多视处理和结果显示等步骤。测试数据位ERS数据。首先,通过加载包含SAR原始数据的.mat文件,获取数据矩阵并设置相关的传感器参数。接着,定义了两个主要脉冲,即距离向脉冲和方位向脉冲,并对其进行傅里叶变换和共轭运算,得到用于后续相关处理的脉冲模板。在数据聚焦步骤中,通过距离向和方位向的压缩操作,将
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 深入理解LDA主题模型及其在文本分析中的应用
小高要坚强
python信息可视化matplotlib算法分类
深入理解LDA主题模型及其在文本分析中的应用在自然语言处理领域,主题模型是一种强大的工具,能够自动发现文档集中的潜在主题。在大规模文本数据分析中,LatentDirichletAllocation(LDA)是最受欢迎的主题模型之一。LDA的核心目标是从文档集中提取不同的主题,并确定每篇文档属于这些主题的概率分布。本文将详细介绍LDA主题模型的原理、如何使用Python实现LDA,并演示如何将其应用
- 统计学8——假设检验
零 度°
统计学概率论
目录结构框架内容精读1.假设检验形式2.一个总体参数的检验2.1总体均值的检验2.2总体比例检验2.3总体方差检验3.两个总体参数的检验3.1均值差检验3.2比例差检验3.3方差比检验4.假设检验的结果解读名词解释结构框架内容精读1.假设检验形式上一章参数估计研究的是用样本统计量估计总体参数的方法,其总体参数在研究前是未知的。本章假设检验则是对总体参数先做一个假设,然后利用样本信息去验证假设是否成
- 石墨烯薄膜行业调研报告(一)
方象知产研究院
01石墨烯类别(一)按厚度1.单碳层石墨烯(singlelayergraphene):由单个碳原子层构成的大平面共轭结构材料,目前石墨烯的大多数奇特性质都是基于此材料2.多层石墨烯或少数碳层石墨烯(afewlayergraphene):厚度在2~10碳层的石墨薄片材料,研究表明,其层内电子运动行为有别于石墨烯材料3.石墨烯微片(graphenenonaplatelets):厚度在10~100纳米厚
- 反式脂肪酸,你猜它是什么酸?
DaobiDoumi
反式脂肪酸?反式脂肪酸是不饱和脂肪酸的一种,其化学结构上多了“非共轭反式双键”。反式脂肪酸的主要来源①是天然食物、反刍动物,如牛、羊、猪等的肉、脂肪、乳及乳制品;②是通过加工产生,主要是植物油的氢化和精炼,另外,食物的煎炒烹炸也会产生少量的反式脂肪酸。TIPS:植物油氢化后可以提升口感,同时延长保质期。反式脂肪酸吃多了会怎么样?○形成血栓。反式脂肪酸会增加人体血液的粘稠度和凝聚力,容易导致血栓的形
- 【MATLAB源码-第139期】基于matlab的OFDM信号识别与相关参数的估计,高阶累量/小波算法调制识别,循环谱估计,带宽估计,载波数目估计等等。
Matlab程序猿
MATLAB通信原理OFDMmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述在现代无线通信系统中,正交频分复用(OFDM)因其高效的频谱利用率、强大的抗多径衰落能力以及灵活的带宽分配等优势,成为了一种非常重要的调制技术。然而,随着无线通信网络的复杂性增加,对OFDM信号的识别与参数估计提出了更高的要求。这不仅是为了提高通信质量和效率,也是为了确保网络的兼容性和安全性。因此,研究OFDM调制识别和参数估计算法具有重要的理论意义和实
- 量子算法入门——3.狄拉克符号与量子态(3)
鸥梨菌Honevid
Quantum算法
3.狄拉克符号的数学基础左矢是右矢的共轭+转置上标*表示共轭算符就是对狄拉克符号进行操作,就是相当于矩阵操作向量,算符对应本征值和本征态本征值:拉伸x、y向量的程度本征态:x、y向量上标匕首符号(或称十字符号,dagger符号),意义就是转置+共轭实数的共轭就是它自己必须在选择基底之后,算符才能记为矩阵,否则还是一个量子态
- 人、机、环境及态、势、感、知之间的共轭
人机与认知实验室
机器学习决策树算法人工智能数据挖掘
一、共轭的本质在数学中,共轭通常指两个复数中的一个与另一个具有相同的实部但虚部互为相反数。例如,对于复数a+bi,其共轭是a-bi。共轭的本质在于保持复数的实部不变,但改变虚部的符号,从而使两个复数在某种程度上具有对称性。在线性代数中,共轭也可以指两个向量之间的关系。对于复数向量,共轭就是将向量的每个元素取共轭。在这种意义上,共轭的本质是在保持向量的长度和方向不变的同时改变其元素的符号。在语言学中
- 九月二十六日总结
疯狂太阳花
英语:2013年第三篇,我们的未来一片光明,第四篇,州政府的权利,联邦政府的权利,最高法院,三权分立,checkandbalance每日一句,信任的重要性时文精析数学:数理统计的初步,参数估计样本均值,样本方差,k阶原点矩,三个分布,卡方分布,t分布,F分布,正态总体点估计,矩估计法,最大似然估计结构力学:静定拱,三绞拱,拱轴线,拱趾,拱顶,跨度,拱高内力计算,合理拱轴线
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st