毕设之Opencv批量霍夫圆检测

 毕设之Opencv批量霍夫圆检测

程序思路:编写read_csv()函数读取图片目录下txt文档,获取各BMP文件绝对路径以及对应圆的圆心坐标、半径参数。读取各BMP图像,转为灰度图,进行图像平滑,最后霍夫圆检测;并将检测结果和实际结果存入txt文档。

本程序高斯平滑和霍夫圆变换都需要调参。

功能小结:

1、read_csv()函数

void read_csv(string& csvPath, vector<String>& CirclePath, vector<int>& Circle_x, vector<int>& Circle_y, vector<int>& Circle_r)

csvPath:txt路径

CirclePath:从txt中读取的bmp路径

Circle_x:bmp图像中圆的圆心x坐标

Circle_y:bmp图像中圆的圆心y坐标

Circle_r:bmp图像中圆的半径r

2、创建txt文本,并写入数据

#include <iostream>

#include <sstream>

#include <fstream>

ofstream file("filepath",ios::out);

if (file.is_open())

{

    file <<;

}

file.close();

3、转化为灰度图

cvtColor(srcImage,midImage, COLOR_BGR2GRAY);//转化边缘检测后的图为灰度图

@paramsrc input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), orsingle-precision

floating-point.

@paramdst output image of the same size and depth as src.

@paramcode color space conversion code (see cv::ColorConversionCodes).

@paramdstCn number of channels in the destination image; if the parameter is 0, thenumber of the

channelsis derived automatically from src and code.

3、高斯平滑

GaussianBlur(midImage,midImage, Size(9, 9), 2, 2);

感悟:ksize、 sigmaX、sigmaY取值大小会影响平滑效果,对霍夫圆检测有较大的影响。

CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,

                                double sigmaX, double sigmaY = 0,

                                int borderType = BORDER_DEFAULT );

/**@brief Blurs an image using a Gaussian filter.

 

Thefunction convolves the source image with the specified Gaussian kernel.In-place filtering is

supported.

 

@paramsrc input image; the image can have any number of channels, which are processed

independently,but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

@paramdst output image of the same size and type as src.

@paramksize Gaussian kernel size. ksize.width and ksize.height can differ but theyboth must be

positiveand odd. Or, they can be zero's and then they are computed from sigma.

@paramsigmaX Gaussian kernel standard deviation in X direction.

@paramsigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, itis set to be

equalto sigmaX, if both sigmas are zeros, they are computed from ksize.width andksize.height,

respectively(see cv::getGaussianKernel for details); to fully control the result regardlessof

possiblefuture modifications of all this semantics, it is recommended to specify all ofksize,

sigmaX,and sigmaY.

@paramborderType pixel extrapolation method, see cv::BorderTypes

 

@sa  sepFilter2D, filter2D, blur, boxFilter,bilateralFilter, medianBlur

 */

4、霍夫圆变化

HoughCircles(midImage,circles, HOUGH_GRADIENT,1.5, 10, 100, 300, 100, 500);

感悟:dp取值1.5合适(圆心相关);param1表示传递给canny边缘检测的高阈值,低阈值取其一半; param2越大圆越完美数量越少;

CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,

                               int method, double dp, double minDist,

                               double param1 = 100, double param2 = 100,

                               int minRadius = 0, int maxRadius = 0 );

/**@example houghcircles.cpp

Anexample using the Hough circle detector

*/

 

/**@brief Finds circles in a grayscale image using the Hough transform.

 

Thefunction finds circles in a grayscale image using a modification of the Houghtransform.

 

Example::

@code

    #include <opencv2/imgproc.hpp>

    #include <opencv2/highgui.hpp>

    #include <math.h>

 

    using namespace cv;

    using namespace std;

 

    int main(int argc, char** argv)

    {

        Mat img, gray;

        if( argc != 2 || !(img=imread(argv[1],1)).data)

            return -1;

        cvtColor(img, gray, COLOR_BGR2GRAY);

        // smooth it, otherwise a lot of falsecircles may be detected

        GaussianBlur( gray, gray, Size(9, 9),2, 2 );

        vector<Vec3f> circles;

        HoughCircles(gray, circles,HOUGH_GRADIENT,

                     2, gray.rows/4, 200, 100 );

        for( size_t i = 0; i <circles.size(); i++ )

        {

             Pointcenter(cvRound(circles[i][0]), cvRound(circles[i][1]));

             int radius =cvRound(circles[i][2]);

             // draw the circle center

             circle( img, center, 3,Scalar(0,255,0), -1, 8, 0 );

             // draw the circle outline

             circle( img, center, radius,Scalar(0,0,255), 3, 8, 0 );

        }

        namedWindow( "circles", 1 );

        imshow( "circles", img );

 

        waitKey(0);

        return 0;

    }

@endcode

 

@noteUsually the function detects the centers of circles well. However, it may failto find correct

radii.You can assist to the function by specifying the radius range ( minRadius andmaxRadius ) if

youknow it. Or, you may ignore the returned radius, use only the center, and findthe correct

radiususing an additional procedure.

 

@paramimage 8-bit, single-channel, grayscale input image.

@paramcircles Output vector of found circles. Each vector is encoded as a 3-element

floating-pointvector \f$(x, y, radius)\f$ .

@parammethod Detection method, see cv::HoughModes. Currently, the only implementedmethod is HOUGH_GRADIENT

@paramdp Inverse ratio of the accumulator resolution to the image resolution. Forexample, if

dp=1, the accumulator has the same resolution as the input image. If dp=2 , theaccumulator has

halfas big width and height.

@paramminDist Minimum distance between the centers of the detected circles. If theparameter is

toosmall, multiple neighbor circles may be falsely detected in addition to a trueone. If it is

toolarge, some circles may be missed.

@paramparam1 First method-specific parameter. In case of CV_HOUGH_GRADIENT , it isthe higher

thresholdof the two passed to the Canny edge detector (the lower one is twice smaller).

@paramparam2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it isthe

accumulatorthreshold for the circle centers at the detection stage. The smaller it is, themore

falsecircles may be detected. Circles, corresponding to the larger accumulatorvalues, will be

returnedfirst.

@paramminRadius Minimum circle radius.

@parammaxRadius Maximum circle radius.

 

@safitEllipse, minEnclosingCircle

 */

源码:

//--------------------------------------【程序说明】-------------------------------------------

//      程序描述:   利用霍夫变换检测圆

//      开发测试所用操作系统: Windows 7 64bit

//      开发测试所用IDE版本:VisualStudio 2015

//      开发测试所用OpenCV版本:  3.1

//      2015年5月 Created by @姬波林

//      2015年5月 Revised by @姬波林

//------------------------------------------------------------------------------------------------

 

 

//---------------------------------【头文件、命名空间包含部分】----------------------------

//          描述:包含程序所使用的头文件和命名空间

//------------------------------------------------------------------------------------------------

#include <opencv2/opencv.hpp>

#include <opencv2/imgproc/imgproc.hpp>

 

using namespace cv;

using namespace std;

 

#include <iostream>

#include <sstream>

#include <fstream>

 

//-----------------------------------【宏定义部分】--------------------------------------------

//      描述:定义一些辅助宏

//------------------------------------------------------------------------------------------------

 

 

//--------------------------------【全局函数声明部分】-------------------------------------

//      描述:全局函数声明

//-----------------------------------------------------------------------------------------------

void read_csv(string& csvPath, vector<String>& CirclePath, vector<int>& Circle_x, vector<int>& Circle_y, vector<int>& Circle_r)

{

   

    string line, path, classLabel1, classLabel2, classLabel3;

    ifstream file(csvPath.c_str(), ifstream::in);

    while (getline(file, line))

    {

        stringstream lines(line);

        getline(lines, path, '(');

 

        getline(lines, classLabel1,',');

        if (!classLabel1.empty())

        {

            Circle_x.push_back(atoi(classLabel1.c_str()));

        }

        getline(lines, classLabel2, ')');

        if (!classLabel2.empty())

        {

            Circle_y.push_back(atoi(classLabel2.c_str()));

        }

        getline(lines, classLabel3, '.');

        if (!classLabel3.empty())

        {

            Circle_r.push_back(atoi(classLabel3.c_str()));

        }

 

        if (!path.empty())

        {

            CirclePath.push_back(path+"("+ classLabel1 +","+ classLabel2+ ")" + classLabel3 +".bmp");

        }

    }

}

 

 

//-----------------------------------【ShowpText( )函数】----------------------------------

//          描述:输出一些帮助信息

//----------------------------------------------------------------------------------------------

void ShowText()

{

    //输出程序说明

    printf("绘制100个半径随机、圆心随机的圆,并保存为500X500BMP文件\n");

    printf("存储位置:D:\\圆\n");

    printf("命名规则:序号+圆心坐标+半径\n");

    printf("当前使用的OpenCV版本为:" CV_VERSION );

    printf("\n\n ----------------------------------------------------------------------------\n");

}

 

 

 

//---------------------------------------【main( )函数】--------------------------------------

//      描述:控制台应用程序的入口函数,我们的程序从这里开始执行

//-----------------------------------------------------------------------------------------------

 

const int kvalue = 15;//双边滤波邻域大小

 

int main()

{

    //批量读入圆路径

    string CircleCsvPath = "D:\\Circle\\at.txt";

    vector<String> vecCirclePath;

    vector<int> Circle_x, Circle_y, Circle_r;

    read_csv(CircleCsvPath, vecCirclePath,Circle_x, Circle_y, Circle_r);

 

    ofstream file("D:\\Circle\\检测结果.txt", ios::out);

    if (file.is_open())

    {

        file << "序号" << "\t" << "圆心x" << "\t" << "圆心y" << "\t" << "半径r" << endl;

    }

    //霍夫圆检测

    for (size_t i = 0; i < 100; i++)

    {

        Mat srcImage = imread(vecCirclePath[i].c_str(), 1);//读取原彩色图

        //【1】载入原始图、Mat变量定义  

        Mat midImage, dstImage;//临时变量和目标图的定义

 

        //【2】显示原始图

        //imshow("【原始图】", srcImage);

 

        //【3】转为灰度图并进行图像平滑

        cvtColor(srcImage, midImage, COLOR_BGR2GRAY);//转化边缘检测后的图为灰度图

        GaussianBlur(midImage, midImage, Size(9, 9), 2, 2);

        //imshow("图像平滑", midImage);

        //【4】进行霍夫圆变换

        vector<Vec3f> circles;

        HoughCircles(midImage, circles, HOUGH_GRADIENT, 1.5, 10, 100, 300,100, 500);

        cout << "x=\ty=\tr=" << endl;

        //【5】依次在图中绘制出圆

        for (size_t j = 0; j < circles.size(); j++)

        {

            //参数定义

            Point center(cvRound(circles[j][0]), cvRound(circles[j][1]));

            int radius = cvRound(circles[j][2]);

            //绘制圆心

            circle(srcImage, center, 1, Scalar(0, 255, 0), -1, 8,0);

            //绘制圆轮廓

            circle(srcImage, center, radius, Scalar(155, 50, 255), 1,8, 0);

 

            if (file.is_open())

            {

                file << i << "\t" << Circle_x[i] << "\t" << Circle_y[i] << "\t"

                    << Circle_r[i] << "\t" << "实际结果" << endl;

                file<< i << "\t" << cvRound(circles[j][0]) << "\t" << cvRound(circles[j][1]) << "\t"

                    << cvRound(circles[j][2]) << "\t" << "检测结果" << endl;//在控制台输出圆心坐标和半径   

            }

            cout << Circle_x[i] << "\t" << Circle_y[i] << "\t"

                << Circle_r[i] << endl;//原图圆心坐标和半径    

            cout << cvRound(circles[j][0]) << "\t" << cvRound(circles[j][1]) << "\t"

                << cvRound(circles[j][2]) << endl;//在控制台输出圆心坐标和半径      

        }

    }

   

    //【6】显示效果图 

    //imshow("【效果图】", srcImage);

    file.close();

    waitKey();

    return 0;

}

 

效果图:


毕设之Opencv批量霍夫圆检测_第1张图片

你可能感兴趣的:(opencv,霍夫圆变换)