扩展欧几里得算法与模乘逆元的程序

代码来自维基百科的Extended Euclidean algorithm。

扩展欧几里得算法程序:

function extended_gcd(a, b)
    s := 0;    old_s := 1
    t := 1;    old_t := 0
    r := b;    old_r := a
    while r ≠ 0
        quotient := old_r div r
        (old_r, r) := (r, old_r - quotient * r)
        (old_s, s) := (s, old_s - quotient * s)
        (old_t, t) := (t, old_t - quotient * t)
    output "Bézout coefficients:", (old_s, old_t)
    output "greatest common divisor:", old_r
    output "quotients by the gcd:", (t, s)

两段计算模乘逆元的程序分别如下:

function inverse(a, n)
    t := 0;     newt := 1;    
    r := n;     newr := a;    
    while newr ≠ 0
        quotient := r div newr
        (t, newt) := (newt, t - quotient * newt) 
        (r, newr) := (newr, r - quotient * newr)
    if r > 1 then return "a is not invertible"
    if t < 0 then t := t + n
    return t
function inverse(a, p)
    t := 0;     newt := 1;    
    r := p;     newr := a;    
    while newr ≠ 0
        quotient := r div newr
        (r, newr) := (newr, r - quotient * newr)
        (t, newt) := (newt, t - quotient * newt) 
    if degree(r) > 0 then 
        return "Either p is not irreducible or a is a multiple of p"
    return (1/r) * t




你可能感兴趣的:(扩展欧几里得算法与模乘逆元的程序)