leetcode--Unique Paths && Unique Paths ii

题目一要求:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

用中文解释就是从start到finish总共有多少条路径,在只可以往下走或者往右走的情况下。

算法思路:

1)首先想到的是递归调用。递归求出往下走和往右走的和就是所求路径条数。

class Solution{
public:
int uniquePathsBackTrack(int m, int n) {
		if(m==1 || n==1) return 1;
		return uniquePaths(m-1, n) + uniquePaths(m, n-1);
	}
};

但是会出现超时的情况。因为子问题会被计算很多次(参考斐波拉契数列的递归求解)

2)动态规划算法一:先用一个二维数组将所有结果保存起来,这样避免重复计算; 

class Solution{
public:
    int uniquePaths(int m, int n)
{
       if(m <= 0 || n <= 0)
             return 0;
       vector<vector<int>> result(m,vector<int>(n,1));
       for(int i = 1;i < m;++i)
           for(int j = 1;j < n;++j)
            {
                   result[i][j] = result[i][j-1] + result[i-1][j];
             }
             return result[m-1][n-1];
}
};

3)动态规划法二:用一个一维数组来存储计算结果。

class Solution {
public:
    int uniquePaths(int m, int n) {
     vector <int> result(n,1);
      if(m == 0 || n == 0)
      {
          return 0;
      }
      for(int i = 1;i < m;++i)
       for(int j = 1;j < n;++j)
       {
           result[j] = result[j] + result[j-1]; 
       }
       return result[n-1];
   }
};


4)数学里面的组合方法:总共要走m+n-2步,其中有m-1步是往下走的,有n-1步是往右走的。本质上就是一个组合问题,也就是从m+n-2个不同元素中每次取出m-1个元素的组合数。Cm+n-2^n-1.

具体代码实现参考:http://blog.csdn.net/linhuanmars/article/details/22126357

public int uniquePaths(int m, int n) {
    double dom = 1;
    double dedom = 1;
    int small = m<n? m-1:n-1;
    int big = m<n? n-1:m-1;
    for(int i=1;i<=small;i++)
    {
        dedom *= i;
        dom *= small+big+1-i;
    }
    return (int)(dom/dedom);
}

 小结:

个人觉得动态规划的算法是最优的,当然要是数学计算题的话那么最后一种解法当然是最优解啦!笔试的时候比较试用。没记错的话今年阿里的秋招的时候有这么一道题。


题目二要求:

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

恩,意思就是1代表过不去!那么对应的结果数组这个地方就为0!!!

由于题目一中的值初始时都为1,但是对于题目二来说,初始值要看给的矩阵是否有障碍来判断!

源代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int row = obstacleGrid.size();
        int col = obstacleGrid[0].size();
        int result[row][col];
        result[0][0] = 1;
        if(obstacleGrid[0][0] == 1 || obstacleGrid[row-1][col-1] == 1)
            return 0;
        for(int i = 1;i < row; ++i)
        {
            result[i][0] = obstacleGrid[i][0] == 1 ? 0 : result[i-1][0];
        }
        for(int j = 1;j < col;++j)
        {
            result[0][j] = obstacleGrid[0][j] == 1 ? 0 : result[0][j-1];
        }
        
        for(int i = 1; i < row;++i)
           for(int j = 1;j < col;++j)
           {
               result[i][j] = obstacleGrid[i][j] == 1 ? 0 : result[i-1][j] + result[i][j-1];
           }
           
        return result[row-1][col-1];
    }
};
Notice:题目二和题目一的初始化是不一样的!





你可能感兴趣的:(LeetCode,路径问题,动态规划及其实例)