其实就是查找前驱和后继的问题, 因为绝对值最小的情况,一定是前驱和后继和k的绝对值。
这里处理有一个小方法, 一开始在树中加入maxnum和minnum2个值。 树有2个节点,就为空树。这样就不会有不存在前驱和后继的情况了。
同时还用到一个技巧,flag。 flag=0和1. 如果读入的是0和1,和flag相同就插入,否则就删除。 如果树的节点数量为2,那么flag^=flag即可。
长期使用的ZKW splay时间效率还不错。
这题有几个细节:
1、答案要mod
2、在比较出前驱和后继谁更优之前不能MOD(我在这里卡了一会儿……WA掉5个数据)
3、想省事就long long吧……
Accepted | 100 | 137 ms | 1752 KB | 3.2 KB | G++ |
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #define LL long long const LL maxint = 120000000000LL; struct node { node *c[2]; LL key, size; node() { key = 0, size = 0, c[0] = c[1] = this; } node(LL KEY_,node *c0, node *c1) { key = KEY_; c[0] = c0; c[1] = c1; } node* rz(){return size = c[0] -> size + c[1] -> size + 1, this;} }Tnull, *null = &Tnull; struct splay { node *root; splay() { root = (new node(*null)) -> rz(); root -> key = maxint; } inline void zig(int d) { node *t = root -> c[d]; root -> c[d] = null -> c[d]; null -> c[d] = root; root = t; } inline void zigzig(int d) { node *t = root -> c[d] -> c[d]; root -> c[d] -> c[d] = null -> c[d]; null -> c[d] = root -> c[d]; root -> c[d] = null -> c[d] -> c[!d]; null -> c[d] -> c[!d] = root -> rz(); root =t; } inline void finish(int d) { node *t = null -> c[d], *p = root -> c[!d]; while (t != null) { t = null -> c[d] -> c[d]; null -> c[d] -> c[d] = p; p = null -> c[d] -> rz(); null -> c[d] = t; } root -> c[!d] = p; } inline void select(int k)//找左儿子有k个size的节点 { int t; while (1) { bool d = k > (t = root -> c[0] -> size) ; if (k == t || root -> c[d] == null) break; if (d) k -= t + 1; bool dd = k > (t = root -> c[d] -> c[0] -> size); if (k == t || root -> c[d] -> c[dd] == null) {zig(d); break;} if (dd) k-= t+ 1; d != dd ? zig(d), zig(dd) : zigzig(dd); } finish(0), finish(1); root -> rz(); } inline void search(LL x) { while (1) { bool d = x > root -> key; if (root -> c[d] == null) break; bool dd = x > root -> c[d] -> key; if (root -> c[d] -> c[dd] == null){zig(d); break;} d != dd ? zig(d), zig(dd) : zigzig(d); } finish(0), finish(1); root -> rz(); if (x > root -> key) select(root -> c[0] -> size + 1); } inline void ins(LL x) { search(x); node *oldroot = root; root = new node(x, oldroot -> c[0], oldroot); oldroot -> c[0] = null; oldroot -> rz(); root -> rz(); } void Tdel(LL x) { search(x); node *oldroot=root; root=root->c[1]; select(0); root->c[0]=oldroot->c[0]; root->rz(); delete oldroot; } inline void del(LL x) { search(x); node *oldroot = root; root = root -> c[1]; select(0); root -> c[0] = oldroot -> c[0]; root -> rz(); delete oldroot; } inline LL sel(int k) {return select(k - 1), root -> key;} inline int ran(LL x) {return search(x), root -> c[0] -> size + 1;} }sp; LL flag , tmp, last_flag = -1, ans = 0, tmp_ans; LL a, b, rank; int n; int main() { scanf("%d", &n); sp.ins(-120000000000LL); while (n--) { scanf("%d%lld", &flag, &tmp); if (sp.root -> size == 2) last_flag = flag; if (flag == last_flag) sp.ins(tmp); else{ rank = sp.ran(tmp); a = sp.sel(rank - 1); //比tmp小的数字 b = sp.sel(rank);//比tmp大的数字 tmp_ans = tmp - a; //默认答案是比tmp小的 if (tmp_ans <= b - tmp) sp.del(a); else { tmp_ans = b- tmp; sp.del(b); } ans = (tmp_ans + ans) % 1000000; } } printf("%lld\n", ans); return 0; }