排序算法

在计算机科学与数学中,一个排序算法(Sorting algorithm)是一种能将一串数据依照特定排序方式的一种算法。最常用到的排序方式是数值顺序以及字典顺序。有效的排序算法在一些算法(例如搜索算法与合并算法)中是重要的,如此这些算法才能得到正确解答。排序算法也用在处理文字数据以及产生人类可读的输出结果。基本上,排序算法的输出必须遵守下列两个原则:

  1. 输出结果为递增串行(递增是针对所需的排序顺序而言)
  2. 输出结果是原输入的一种排列、或是重组

虽然排序算法是一个简单的问题,但是从计算机科学发展以来,已经有大量的研究在此问题上。举例而言,冒泡排序在1956年就已经被研究。虽然大部分人认为这是一个已经被解决的问题,有用的新算法仍在不断的被发明。(例子:图书馆排序在2004年被发表)

分类

在计算机科学所使用的排序算法通常被分类为:

  • 计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。一般而言,好的性能是O(n log n),且坏的性能是O(n2)。对于一个排序理想的性能是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(n log n)。
  • 存储器使用量(以及其他电脑资源的使用)
  • 稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录RS,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
  • 一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序和快速排序。选择排序包含希尔排序和堆排序。

 稳定度

当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1)  (3, 1)  (3, 7)  (5, 6)

在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:

(3, 1)  (3, 7)  (4, 1)  (5, 6)   (維持次序)
(3, 7)  (3, 1)  (4, 1)  (5, 6)   (次序被改變)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

排列算法列表

在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

稳定的

  • 冒泡排序(bubble sort) — O(n2)
  • 鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
  • 插入排序 (insertion sort)— O(n2)
  • 桶排序 (bucket sort)— O(n); 需要 O(k) 额外空间
  • 计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外空间
  • 合并排序 (merge sort)— O(n log n); 需要 O(n) 额外空间
  • 原地合并排序 — O(n2)
  • 二叉排序树排序 (Binary tree sort) — O(n log n)期望时间; O(n2)最坏时间; 需要 O(n) 额外空间
  • 鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外空间
  • 基数排序 (radix sort)— O(n·k); 需要 O(n) 额外空间
  • Gnome 排序 — O(n2)
  • 图书馆排序 — O(n log n) with high probability, 需要 (1+ε)n 额外空间

不稳定

  • 选择排序 (selection sort)— O(n2)
  • 希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
  • 组合排序 — O(n log n)
  • 堆排序 (heapsort)— O(n log n)
  • 平滑排序 — O(n log n)
  • 快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数列表一般相信是最快的已知排序
  • Introsort — O(n log n)
  • Patience sorting — O(n log n + k) 最坏情况时间,需要 额外的 O(n +k) 空间,也需要找到最长的递增子串行(longest increasing subsequence)

不实用的排序算法

  • Bogo排序 — O(n × n!) 期望时间,无穷的最坏情况。
  • Stupid sort — O(n3); 递归版本需要 O(n2) 额外存储器
  • 珠排序(Bead sort) — O(n) or O(√n), 但需要特别的硬件
  • Pancake sorting — O(n), 但需要特别的硬件


平均时间复杂度

平均时间复杂度由高到低为:

  • 冒泡排序 O(n2)
  • 插入排序 O(n2)
  • 选择排序 O(n2)
  • 归并排序 O(n log n)
  • 堆排序 O(n log n)
  • 快速排序 O(n log n)
  • 希尔排序 O(n1.25)
  • 基数排序 O(n)

说明:虽然完全逆续的情况下,快速排序会降到选择排序的速度,不过从概率角度来说(参考信息学理论,和概率学),不对算法做编程上优化时,快速排序的平均速度比堆排序要快一些。

实际测试结果

OS: winxp, Compiler: vc8, CPU:Intel T7200,  Memory: 2G
不同数组长度下调用6种排序1000次所需时间(秒)

length          shell           quick           merge           insert          select          bubble
100             0.0141          0.359           1.875           0.204           0.313           0.421
1000            0.218           0.578           2.204           1.672           2.265           4
5000            1.484           3.25            14.14           41.392          63.656          101.703
10000           3.1             7.8             23.5            253.1           165.6           415.7
50000           21.8            40.6            121.9           411.88          6353.1          11648.5
100000          53.1            89              228.1           16465.7         25381.2         44250


结论:
数组长度不大的情况下不宜使用归并排序,其它排序差别不大。
数组长度很大的情况下Shell最快,Quick其次,冒泡最慢。

简要比较

名称 数据对象 稳定性 时间复杂度 空间复杂度 描述
平均 最坏
插入排序 数组、链表 O(n2) O(1) (有序区,无序区)。把无序区的第一个元素插入到有序区的合适的位置。对数组:比较得少,换得多。
直接选择排序 数组 × O(n2) O(1) (有序区,无序区)。在无序区里找一个最小的元素跟在有序区的后面。 对数组:比较得多,换得少。
链表
堆排序 数组 × O(nlogn) O(1) (最大堆,有序区)。从堆顶把根卸出来放在有序区之前,再恢复堆。
归并排序 数组、链表 O(nlogn) O(n) +O(logn) , 如果不是从下到上 把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。可从上到下或从下到上进行。
快速排序 数组 × O(nlogn) O(n2) O(logn) ,O(n) (小数,枢纽元,大数)。
Accum qsort 链表 O(nlogn) O(n2) O(logn) ,O(n) (无序区,有序区)。把无序区分为(小数,枢纽元,大数),从后到前压入有序区。
   
决策树排序   O(logn!) O(n!) O(n) <O(logn!) <O(nlogn)
   
计数排序 数组、链表 O(n) O(n+m) 统计小于等于该元素值的元素的个数 i,于是该元素就放在目标数组的索引 i位。(i≥0)
桶排序 数组、链表 O(n) O(m) 将值为 i 的元素放入i 号桶,最后依次把桶里的元素倒出来。
基数排序 数组、链表     一种多关键字的排序算法,可用桶排序实现。
  • 均按从小到大排列
  • n 代表数据规模
  • m 代表数据的最大值减最小值

你可能感兴趣的:(排序算法)