1 13 5 6 9 5 2 3 6 8 7 3 2 5 1 4 1 13 1 10 1 13 3 6 3 6 3 6 2 8 2 8 1 9 1 9
Case #1: 13 7 3 6 9
给出n个数,问范围在[l,r]内,值在[A,B]内的数有多少个
转化为在[l,r]的范围内A是第几大的数,B是第几大的树,这样相减就可以得到结果,但是我们只能求第k大的数,不能找出数是第几个,二分k,用二分找出上下界。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define maxn 50005 int a[maxn] , a_sort[maxn] ; int tree[20][maxn] ; int sum[20][maxn] ; int n , m ; void build(int c,int l,int r) { if( l == r ) return ; int mid = (l+r)/2 , m = mid-l+1 ; int pl = l , pr = mid+1 , i ; for(i = l ; i <= mid ; i++) { if( a_sort[i] < a_sort[mid] ) m-- ; } for(i = l ; i <= r ; i++) { if( i == l ) sum[c][i] = 0 ; else sum[c][i] = sum[c][i-1] ; if( tree[c][i] == a_sort[mid] ) { if( m ) { m-- ; tree[c+1][pl++] = tree[c][i] ; sum[c][i]++ ; } else tree[c+1][pr++] = tree[c][i] ; } else if( tree[c][i] < a_sort[mid] ) { tree[c+1][pl++] = tree[c][i] ; sum[c][i]++ ; } else tree[c+1][pr++] = tree[c][i] ; } build(c+1,l,mid) ; build(c+1,mid+1,r) ; return ; } int query(int c,int l,int r,int ql,int qr,int k) { if( l == r ) return tree[c][l] ; int mid = (l+r)/2 , num1 , num2 ; if( l == ql ) { num1 = 0 ; num2 = sum[c][qr] ; } else { num1 = sum[c][ql-1] ; num2 = sum[c][qr] - num1 ; } if( k <= num2 ) query(c+1,l,mid,l+num1,l+num1+num2-1,k) ; else query(c+1,mid+1,r,mid+1+(ql-l-num1),mid+1+(qr-l-num1-num2),k-num2) ; } void solve(int l,int r,int A,int B) { int low , mid , high , last , x ; int ans = 0 , flag = 0 ; low = 1 ; high = r-l+1 ; last = -1 ; while( low <= high ) { mid = (low+high)/2 ; x = query(0,1,n,l,r,mid) ; if( x <= B ) { last = mid ; low = mid + 1 ; } else high = mid - 1 ; } if( last == -1 ) flag = 1 ; else ans += last ; low = 1 ; high = r-l+1 ; last = -1 ; while( low <= high ) { mid = (low+high)/2 ; x = query(0,1,n,l,r,mid) ; if( x >= A ) { last = mid ; high = mid - 1 ; } else low = mid + 1 ; } if( last == -1 ) flag = 1 ; else ans = ans - last+1 ; if( flag ) ans = 0 ; printf("%d\n", ans) ; } int main() { int t , step = 0 ; int l , r , A , B ; int i ; scanf("%d", &t) ; while( t-- ) { scanf("%d %d", &n, &m) ; for(i = 1 ; i <= n ; i++) { scanf("%d", &a[i]) ; tree[0][i] = a_sort[i] = a[i] ; } sort(a_sort+1,a_sort+1+n) ; build(0,1,n) ; printf("Case #%d:\n", ++step) ; while( m-- ) { scanf("%d %d %d %d", &l, &r, &A, &B) ; solve(l,r,A,B) ; } } return 0 ; }