早就想整理网络数据包收发流程了,一直太懒没动笔。今天下决心写了
一、硬件环境
intel82546:PHY与MAC集成在一起的PCI网卡芯片,很强大
bcm5461: PHY芯片,与之对应的MAC是TSEC
TSEC: Three Speed Ethernet Controller,三速以太网控制器,PowerPc 架构CPU里面的MAC模块
注意,TSEC内部有DMA子模块
话说现在的CPU越来越牛叉了,什么功能都往里面加,最常见的如MAC功能。
TSEC只是MAC功能模块的一种,其他架构的cpu也有和TSEC类似的MAC功能模块。
这些集成到CPU芯片上的功能模块有个学名,叫平台设备,即 platform device。
二、网络收包原理
网络驱动收包大致有3种情况:
no NAPI:mac每收到一个以太网包,都会产生一个接收中断给cpu,即完全靠中断方式来收包
缺点是当网络流量很大时,cpu大部分时间都耗在了处理mac的中断。
netpoll:在网络和I/O子系统尚不能完整可用时,模拟了来自指定设备的中断,即轮询收包。
缺点是实时性差
NAPI: 采用 中断 + 轮询 的方式:mac收到一个包来后会产生接收中断,但是马上关闭。
直到收够了netdev_max_backlog个包(默认300),或者收完mac上所有包后,才再打开接收中断
通过sysctl来修改
net.core.netdev_max_backlog
或者通过proc修改 /proc/sys/net/core/netdev_max_backlog
下面只写内核配置成使用NAPI的情况,只写TSEC驱动。(非NAPI的情况和PCI网卡驱动 以后再说)
内核版本 linux 2.6.24
三、NAPI 相关数据结构
每个网络设备(MAC层)都有自己的net_device数据结构,这个结构上有napi_struct。
每当收到数据包时,网络设备驱动会把自己的napi_struct挂到CPU私有变量上。
这样在软中断时,net_rx_action会遍历cpu私有变量的poll_list,
执行上面所挂的napi_struct结构的poll钩子函数,将数据包从驱动传到网络协议栈。
四、内核启动时的准备工作
4.1 初始化网络相关的全局数据结构,并挂载处理网络相关软中断的钩子函数
start_kernel()
--> rest_init()
--> do_basic_setup()
--> do_initcall
-->
net_dev_init
__init
net_dev_init()
{
//每个CPU都有一个CPU私有变量 _get_cpu_var(softnet_data)
//_get_cpu_var(softnet_data).poll_list很重要,软中断中需要遍历它的
for_each_possible_cpu(i) {
struct softnet_data *queue;
queue = &per_cpu(softnet_data, i);
skb_queue_head_init(&queue->input_pkt_queue);
queue->completion_queue = NULL;
INIT_LIST_HEAD(&queue->poll_list);
queue->backlog.poll = process_backlog;
queue->backlog.weight = weight_p;
}
open_softirq(NET_TX_SOFTIRQ,
net_tx_action, NULL);
//在软中断上挂网络发送handler
open_softirq(NET_RX_SOFTIRQ,
net_rx_action, NULL);
//在软中断上挂网络接收handler
}
4.2 加载网络设备的驱动
NOTE:这里的网络设备是指MAC层的网络设备,即TSEC和PCI网卡(bcm5461是phy)
在网络设备驱动中创建net_device数据结构,并初始化其钩子函数 open(),close() 等
挂载TSEC的驱动的入口函数是
gfar_probe
// 平台设备 TSEC 的数据结构
static struct platform_driver gfar_driver = {
.probe =
gfar_probe,
.remove = gfar_remove,
.driver = {
.name = "fsl-gianfar",
},
};
int
gfar_probe(struct platform_device *pdev)
{
dev = alloc_etherdev(sizeof (*priv));
// 创建net_device数据结构
dev->open =
gfar_enet_open;
dev->hard_start_xmit =
gfar_start_xmit;
dev->tx_timeout = gfar_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_GFAR_NAPI
netif_napi_add(dev, &priv->napi,
gfar_poll,GFAR_DEV_WEIGHT);
//软中断里会调用poll钩子函数
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = gfar_netpoll;
#endif
dev->stop = gfar_close;
dev->change_mtu = gfar_change_mtu;
dev->mtu = 1500;
dev->set_multicast_list = gfar_set_multi;
dev->set_mac_address = gfar_set_mac_address;
dev->ethtool_ops = &gfar_ethtool_ops;
}
五、
启用
网络设备
5.1 用户调用ifconfig等程序,然后通过ioctl系统调用进入内核
socket的ioctl()系统调用
--> sock_ioctl()
--> dev_ioctl() //判断SIOCSIFFLAGS
--> __dev_get_by_name(net, ifr->ifr_name) //根据名字选net_device
--> dev_change_flags() //判断IFF_UP
--> dev_open(net_device) //调用open钩子函数
对于TSEC来说,挂的钩子函数是
gfar_enet_open(net_device)
5.2 在网络设备的open钩子函数里,分配接收bd,挂中断ISR(包括rx、tx、err),对于TSEC来说
gfar_enet_open
--> 给Rx Tx Bd 分配一致性DMA内存
--> 把Rx Bd的“EA地址”赋给数据结构,物理地址赋给TSEC寄存器
--> 把Tx Bd的“EA地址”赋给数据结构,物理地址赋给TSEC寄存器
--> 给 tx_skbuff 指针数组 分配内存,并初始化为NULL
--> 给 rx_skbuff 指针数组 分配内存,并初始化为NULL
--> 初始化Tx Bd
--> 初始化Rx Bd,提前分配存储以太网包的skb,这里使用的是一次性dma映射
(注意:
#define DEFAULT_RX_BUFFER_SIZE 1536保证了skb能存一个以太网包)
rxbdp = priv->rx_bd_base;
for (i = 0; i < priv->rx_ring_size; i++) {
struct sk_buff *skb = NULL;
rxbdp->status = 0;
//这里真正分配skb,并且初始化rxbpd->bufPtr, rxbdpd->length
skb = gfar_new_skb(dev, rxbdp);
priv->rx_skbuff[i] = skb;
rxbdp++;
}
rxbdp--;
rxbdp->status |= RXBD_WRAP;
// 给最后一个bd设置标记WRAP标记
--> 注册TSEC相关的中断handler: 错误,接收,发送
request_irq(priv->interruptError,
gfar_error, 0, "enet_error", dev)
request_irq(priv->interruptTransmit,
gfar_transmit, 0, "enet_tx", dev)
//包发送完
request_irq(priv->interruptReceive,
gfar_receive, 0, "enet_rx", dev)
//包接收完
-->gfar_start(net_device)
// 使能Rx、Tx
// 开启TSEC的 DMA 寄存器
// Mask 掉我们不关心的中断event
最终,TSEC相关的Bd等数据结构应该是下面这个样子的
六、中断里接收以太网包
TSEC的RX已经使能了,网络数据包进入内存的流程为:
网线 --> Rj45网口 --> MDI 差分线
--> bcm5461(PHY芯片进行数模转换) --> MII总线
--> TSEC的DMA Engine 会自动检查下一个可用的Rx bd
--> 把网络数据包 DMA 到 Rx bd 所指向的内存,即skb->data
接收到一个完整的以太网数据包后,TSEC会根据event mask触发一个 Rx 外部中断。
cpu保存现场,根据中断向量,开始执行外部中断处理函数do_IRQ()
do_IRQ 伪代码
{
上半部处理硬中断
查看中断源寄存器,得知是网络外设产生了外部中断
执行网络设备的rx中断handler
(设备不同,函数不同,但流程类似,TSEC是gfar_receive)
1. mask 掉 rx event,再来数据包就不会产生rx中断
2. 给napi_struct.state加上 NAPI_STATE_SCHED 状态
3. 挂网络设备自己的napi_struct结构到cpu私有变量_get_cpu_var(softnet_data).poll_list
4. 触发网络接收软中断
下半部处理软中断
依次执行所有软中断handler,包括timer,tasklet等等
执行网络接收的软中断handler
net_rx_action
1. 遍历cpu私有变量_get_cpu_var(softnet_data).poll_list
2. 取出poll_list上面挂的napi_struct 结构,执行钩子函数napi_struct.poll()
(设备不同,钩子函数不同,流程类似,TSEC是gfar_poll)
3. 若poll钩子函数处理完所有包,则打开rx event mask,再来数据包的话会产生rx中断
4. 调用napi_complete(napi_struct *n)
把napi_struct 结构从_get_cpu_var(softnet_data).poll_list 上移走
同时去掉 napi_struct.state 的 NAPI_STATE_SCHED 状态
}
6.1 TSEC的接收中断处理函数
gfar_receive
{
#ifdef CONFIG_GFAR_NAPI
// test_and_set当前net_device的napi_struct.state 为 NAPI_STATE_SCHED
// 在软中断里调用 net_rx_action 会检查状态 napi_struct.state
if (
netif_rx_schedule_prep(dev, &priv->napi)) {
tempval = gfar_read(&priv->regs->imask);
tempval &= IMASK_RX_DISABLED;
//mask掉rx,不再产生rx中断
gfar_write(&priv->regs->imask, tempval);
// 将当前net_device的 napi_struct.poll_list 挂到
// CPU私有变量__get_cpu_var(softnet_data).poll_list 上,并触发软中断
// 所以,在软中断中调用 net_rx_action 的时候,就会执行当前net_device的
// napi_struct.poll()钩子函数,即 gfar_poll()
__netif_rx_schedule(dev, &priv->napi);
}
#else
gfar_clean_rx_ring(dev, priv->rx_ring_size);
#endif
}
6.2 网络接收软中断net_rx_action
net_rx_action()
{
struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
//通过 napi_struct.poll_list, 将N多个 napi_struct 链接到一条链上
//通过 CPU私有变量,我们找到了链头,然后开始遍历这个链
int budget = netdev_budget;
//这个值就是 net.core.netdev_max_backlog,通过sysctl来修改
while (!list_empty(list)) {
struct napi_struct *n;
int work, weight;
local_irq_enable();
//从链上取一个 napi_struct 结构(接收中断处理函数里加到链表上的,如gfar_receive)
n = list_entry(list->next, struct napi_struct, poll_list);
weight = n->weight;
work = 0;
if (test_bit(NAPI_STATE_SCHED, &n->state))
//检查状态标记,此标记在接收中断里加上的
work = n->poll(n, weight);
//使用NAPI的话,使用的是网络设备自己的napi_struct.poll
//对于TSEC是,是gfar_poll
WARN_ON_ONCE(work > weight);
budget -= work;
local_irq_disable();
if (unlikely(work == weight)) {
if (unlikely(napi_disable_pending(n)))
__napi_complete(n);
//操作napi_struct,把去掉NAPI_STATE_SCHED状态,从链表中删去
else
list_move_tail(&n->poll_list, list);
}
netpoll_poll_unlock(have);
}
out:
local_irq_enable();
}
static int
gfar_poll(struct napi_struct *napi, int budget)
{
struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
struct net_device *dev = priv->dev;
//TSEC对应的网络设备
int howmany;
//根据dev的rx bd,获取skb并送入协议栈,返回处理的skb的个数,即以太网包的个数
howmany =
gfar_clean_rx_ring(dev, budget);
// 下面这个判断比较有讲究的
// 收到的包的个数小于budget,代表我们在一个软中断里就全处理完了,所以打开 rx硬中断
// 要是收到的包的个数大于budget,表示一个软中断里处理不完所有包,那就不打开 rx硬中断,
// 此次软中断的下一轮循环里再接着处理,直到包处理完(即howmany<budget),再打开 rx硬中断
if (howmany < budget) {
netif_rx_complete(dev, napi);
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
//打开 rx 硬中断,rx 硬中断是在gfar_receive()中被关闭的
gfar_write(&priv->regs->imask, IMASK_DEFAULT);
}
return howmany;
}
gfar_clean_rx_ring(dev, budget)
{
bdp = priv->cur_rx;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
rmb();
skb = priv->rx_skbuff[priv->skb_currx];
//从rx_skbuff[]中获取skb
howmany++;
dev->stats.rx_packets++;
pkt_len = bdp->length - 4;
//从length中去掉以太网包的FCS长度
gfar_process_frame(dev, skb, pkt_len);
dev->stats.rx_bytes += pkt_len;
dev->last_rx = jiffies;
bdp->status &= ~RXBD_STATS;
//清rx bd的状态
skb = gfar_new_skb(dev, bdp);
// Add another skb for the future
priv->rx_skbuff[priv->skb_currx] = skb;
if (bdp->status & RXBD_WRAP)
//更新指向bd的指针
bdp = priv->rx_bd_base;
//bd有WARP标记,说明是最后一个bd了,需要“绕回来”
else
bdp++;
priv->skb_currx = (priv->skb_currx + 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
}
priv->cur_rx = bdp; /* Update the current rxbd pointer to be the next one */
return howmany;
}
gfar_process_frame()
-->skb->protocol = eth_type_trans(skb, dev); //确定网络层包类型,IP、ARP、VLAN等等
-->
RECEIVE(skb) //调用
netif_receive_skb(skb)进入协议栈
#ifdef CONFIG_GFAR_NAPI
#define RECEIVE(x) netif_receive_skb(x)
#else
#define RECEIVE(x) netif_rx(x)
#endif
------------------------------------ 华丽的分割线 ---------------------------------------
呼
,
netif_receive_skb(skb) 可算到协议栈了,歇会儿....
以太网的FCS会在网卡中断
(如gfar_clean_rx_ring)中忽略掉
/* Remove the FCS from the packet length */
pkt_len = bdp->length - 4;
至于填充数据,是在协议栈中被忽略掉的,比如ip协议
ip_rcv()
/* Our transport medium may have padded the buffer out. Now we know it
* is IP we can trim to the true length of the frame.
* Note this now means skb->len holds ntohs(iph->tot_len).
*/
if (pskb_trim_rcsum(skb, len)) {
IP_INC_STATS_BH(IPSTATS_MIB_INDISCARDS);
goto drop;
}