HDU-1846-Brave Game【巴什博弈】

HDU-1846-Brave Game

Problem Description
十年前读大学的时候,中国每年都要从国外引进一些电影大片,其中有一部电影就叫《勇敢者的游戏》(英文名称:Zathura),一直到现在,我依然对于电影中的部分电脑特技印象深刻。
今天,大家选择上机考试,就是一种勇敢(brave)的选择;这个短学期,我们讲的是博弈(game)专题;所以,大家现在玩的也是“勇敢者的游戏”,这也是我命名这个题目的原因。
当然,除了“勇敢”,我还希望看到“诚信”,无论考试成绩如何,希望看到的都是一个真实的结果,我也相信大家一定能做到的~

各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的:
1、 本游戏是一个二人游戏;
2、 有一堆石子一共有n个;
3、 两人轮流进行;
4、 每走一步可以取走1…m个石子;
5、 最先取光石子的一方为胜;

如果游戏的双方使用的都是最优策略,请输出哪个人能赢。

Input
输入数据首先包含一个正整数C(C<=100),表示有C组测试数据。
每组测试数据占一行,包含两个整数n和m(1<=n,m<=1000),n和m的含义见题目描述。

Output
如果先走的人能赢,请输出“first”,否则请输出“second”,每个实例的输出占一行。

Sample Input
2
23 2
4 3

Sample Output
first
second

题目链接:HDU 1846

题目大意:只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

题目思路:当n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。
因此,如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

即:判断第一次first取完能否剩下(m + 1) * r

以下是代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <stack>
#include <map>
#include <queue>
#include<iomanip>
using namespace std;

int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        int n,m;
        cin >> n >> m;
        if (n % (m + 1))  //说明first能取到使得n为(m + 1) * r
        {
            cout << "first" << endl;
        }
        else
        {
            cout << "second" << endl;
        }
    }
    return 0;
}

你可能感兴趣的:(HDU,巴什博弈,1846)