http://www.codeforces.com/contest/678/problem/D
Consider a linear function f(x) = Ax + B. Let's define g(0)(x) = x and g(n)(x) = f(g(n - 1)(x)) for n > 0. For the given integer values A, B, n and x find the value of g(n)(x) modulo 109 + 7.
The only line contains four integers A, B, n and x (1 ≤ A, B, x ≤ 109, 1 ≤ n ≤ 1018) — the parameters from the problem statement.
Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Print the only integer s — the value g(n)(x) modulo 109 + 7.
3 4 1 1
7
g(0)(x) = x
g(n)(x)=f(g(n-1)(x))
f(x) = ax+b
给你a b n x
求g(n)(x)
推一下 发现 g(n)(x) = a^nx+a^(n-1)b+a^(n-2)b+...+ab+b
其实就是等比数列……
快速幂直接莽一波就好了
特判 a=1的时候
#include<bits/stdc++.h>
using namespace std;
const long long mod = 1e9+7;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
int main()
{
long long a,b,n,x;
cin>>a>>b>>n>>x;
if(a==1)
{
cout<<(n%mod*b+x)%mod<<endl;
return 0;
}
long long ans=(quickpow(a,n,mod)-1+mod)%mod;
ans=ans*quickpow(a-1,mod-2,mod)%mod*b%mod;
ans=(ans+quickpow(a,n,mod)*x+mod)%mod;
printf("%lld\n",ans%mod);
}