opencv参考手册里面有个 [人脸检测] 的程序

opencv参考手册里面有个 [人脸检测]  的程序:

#include "cv.h"
#include "highgui.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>

#ifdef _EiC
#define WIN32
#endif

static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;

void detect_and_draw( IplImage* image );

const char* cascade_name =
"haarcascade_frontalface_alt.xml";
/* "haarcascade_profileface.xml";*/

int main( int argc, char** argv )
{
    CvCapture* capture = 0;
    IplImage *frame, *frame_copy = 0;
    int optlen = strlen("--cascade=");
    const char* input_name;

    if( argc > 1 && strncmp( argv[1], "--cascade=", optlen ) == 0 )
    {
        cascade_name = argv[1] + optlen;
        input_name = argc > 2 ? argv[2] : 0;
    }
    else
    {
        cascade_name = "../../data/haarcascades/haarcascade_frontalface_alt2.xml";
        input_name = argc > 1 ? argv[1] : 0;
    }

    cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );

    if( !cascade )
    {
        fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
        fprintf( stderr,
        "Usage: facedetect --cascade=\"<cascade_path>\" [filename|camera_index]\n" );
        return -1;
    }
    storage = cvCreateMemStorage(0);

    if( !input_name || (isdigit(input_name[0]) && input_name[1] == '\0') )
    capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - '0' );
    else
    capture = cvCaptureFromAVI( input_name ); 

    cvNamedWindow( "result", 1 );

    if( capture )
    {
        for(;;)
        {
            if( !cvGrabFrame( capture ))
                break;
            frame = cvRetrieveFrame( capture );
            if( !frame )
                break;
            if( !frame_copy )
                frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
                IPL_DEPTH_8U, frame->nChannels );
            if( frame->origin == IPL_ORIGIN_TL )
                cvCopy( frame, frame_copy, 0 );
            else
                cvFlip( frame, frame_copy, 0 );

            detect_and_draw( frame_copy );

            if( cvWaitKey( 10 ) >= 0 )
                break;
        }

        cvReleaseImage( &frame_copy );
        cvReleaseCapture( &capture );
    }
    else
    {
        const char* filename = input_name ? input_name : (char*)"lena.jpg";
        IplImage* image = cvLoadImage( filename, 1 );

        if( image )
        {
            detect_and_draw( image );
            cvWaitKey(0);
            cvReleaseImage( &image );
        }
        else
        {
            /* assume it is a text file containing the
            list of the image filenames to be processed - one per line */
            FILE* f = fopen( filename, "rt" );
            if( f )
            {
                char buf[1000+1];
                while( fgets( buf, 1000, f ) )
               {
                   int len = (int)strlen(buf);
                   while( len > 0 && isspace(buf[len-1]) )
                   len--;
                   buf[len] = '\0';
                   image = cvLoadImage( buf, 1 );
                   if( image )
                   {
                       detect_and_draw( image );
                       cvWaitKey(0);
                       cvReleaseImage( &image );
                   }
               }
               fclose(f);
            }
        }

    }

    cvDestroyWindow("result");

    return 0;
}

void detect_and_draw( IplImage* img )
{
    static CvScalar colors[] = 
    {
        {{0,0,255}},
        {{0,128,255}},
        {{0,255,255}},
        {{0,255,0}},
        {{255,128,0}},
        {{255,255,0}},
        {{255,0,0}},
        {{255,0,255}}
    };

    double scale = 1.3;
    IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
    IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
    cvRound (img->height/scale)),
    8, 1 );
    int i;

    cvCvtColor( img, gray, CV_BGR2GRAY );
    cvResize( gray, small_img, CV_INTER_LINEAR );
    cvEqualizeHist( small_img, small_img );
    cvClearMemStorage( storage );

    if( cascade )
    {
        double t = (double)cvGetTickCount();
        CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
        1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
        cvSize(30, 30) );
        t = (double)cvGetTickCount() - t;
        printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
        for( i = 0; i < (faces ? faces->total : 0); i++ )
        {
            CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
            CvPoint center;
            int radius;
            center.x = cvRound((r->x + r->width*0.5)*scale);
            center.y = cvRound((r->y + r->height*0.5)*scale);
            radius = cvRound((r->width + r->height)*0.25*scale);
            cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );
        }
    }

    cvShowImage( "result", img );
    cvReleaseImage( &gray );
    cvReleaseImage( &small_img );
} 
 
 
 


运行下,你会发现,好慢好慢~~没找到一次 人脸,都要用几乎500ms 左右。。。。。


看了看学长的程序,发现有几个参数,学长用的参数是~~~~(见下程序),发现只需要10ms左右了。。。。

 

 

 

#include "stdafx.h"
#include "cv.h"
#include "highgui.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>

#ifdef _EiC
#define WIN32
#endif

static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;

void detect_and_draw( IplImage* image );

const char* cascade_name =
"haarcascade_frontalface_alt.xml";

int main( int argc, char** argv )
{
    CvCapture* capture = 0;
    IplImage *frame, *frame_copy = 0;

    cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );

    if( !cascade )
    {
       printf("No cascade!!!!\n");
        return -1;
    }
    storage = cvCreateMemStorage(0);

    capture = cvCaptureFromCAM(-1); 

    cvNamedWindow( "result", 1 );

    if( capture )
    {
        for(;;)
        {
            if( !cvGrabFrame( capture ))
                break;
            frame = cvRetrieveFrame( capture );
            if( !frame )
                break;
            if( !frame_copy )
                frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
                IPL_DEPTH_8U, frame->nChannels );
            if( frame->origin == IPL_ORIGIN_TL )
                cvCopy( frame, frame_copy, 0 );
            else
                cvFlip( frame, frame_copy, 0 );

            detect_and_draw( frame_copy );

            if( cvWaitKey( 10 ) >= 0 )
                break;
        }

        cvReleaseImage( &frame_copy );
        cvReleaseCapture( &capture );
    }

    cvDestroyWindow("result");

    return 0;
}

void detect_and_draw( IplImage* img )
{
    static CvScalar colors[] = 
    {
        {{0,0,255}},
        {{0,128,255}},
        {{0,255,255}},
        {{0,255,0}},
        {{255,128,0}},
        {{255,255,0}},
        {{255,0,0}},
        {{255,0,255}}
    };

<span style="color: rgb(255, 0, 0);">    double scale = 8.0;</span>
    IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
    IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
    cvRound (img->height/scale)),
    8, 1 );
    int i;

    cvCvtColor( img, gray, CV_BGR2GRAY );
    cvResize( gray, small_img, CV_INTER_LINEAR );
    cvEqualizeHist( small_img, small_img );
    cvClearMemStorage( storage );

    if( cascade )
    {
        double t = (double)cvGetTickCount();
        CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
        1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
       <span style="color: rgb(255, 0, 0);"> cvSize(20, 10) );</span>
        t = (double)cvGetTickCount() - t;
        printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
        for( i = 0; i < (faces ? faces->total : 0); i++ )
        {
            CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
            CvPoint center;
            int radius;
            center.x = cvRound((r->x + r->width*0.5)*scale);
            center.y = cvRound((r->y + r->height*0.5)*scale);
            radius = cvRound((r->width + r->height)*0.25*scale);
            cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );
        }
    }

    cvShowImage( "result", img );
    cvReleaseImage( &gray );
    cvReleaseImage( &small_img );
} 
 
 
 


然后又采用

<span style="color: rgb(255, 0, 0);">double scale = 8.0;</span>


 

<span style="color: rgb(255, 0, 0);"> cvSize(30, 30) );</span>


 

发现只需要 3ms 了呀!!!吃惊的改进啊啊啊 。。。。


哈哈~~估计30最大了吧。40的时候,就找不到了吧。。。。检测窗口太大了,就画不出来了。


好吧,看下原因吧。

========================

    IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
    cvRound (img->height/scale)),
    8, 1 );


 

scale是图片缩小的倍数。scale越大,说明small_image 越小,在小图图中找人脸当然更简单了。但是,如果要在已检测到得人脸中继续找 鼻子 的话,检测鼻子所用的 比例 scale_for_nose 反而不能太小,学长说 太小了,导致图片太小反而找不到了。。。。。【这个,我现在还不是很懂···】


++++++++++++++++++++++++++++++++

cvHaarDetectObjects参数意义

函数原型:

CvHaarClassifierCascade* cascade,
                            CvMemStorage* storage,
                            double scale_factor=1.1,
                            int min_neighbors=3, int flags=0,
                            CvSize min_size=cvSize(0,0) );
         image 被检图像
         cascade harr 分类器级联的内部标识形式
         storage 用来存储检测到的一序列候选目标矩形框的内存区域。
         scale_factor 在前后两次相继的扫描中,搜索窗口的比例系数。例如1.1指将搜索窗口依次扩大10%。
          min_neighbors 构成检测目标的相邻矩形的最小个数(缺省-1)。如果组成检测目标的小矩形的个数和小于 min_neighbors-1 都会被排除。如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,这种设定值一般用在用户自定义对检测结果的组合程序上。
flags 操作方式。当前唯一可以定义的操作方式是 CV_HAAR_DO_CANNY_PRUNING。如果被设定,函数利用Canny边缘检测器来排除一些边缘很少或者很多的图像区域,因为这样的区域一般不含被检目标。人脸检测中通过设定阈值使用了这种方法,并因此提高了检测速度。
        
min_size 检测窗口的最小尺寸。缺省的情况下被设为分类器训练时采用的样本尺寸(人脸检测中缺省大小是~20×20)。

         函数 cvHaarDetectObjects 使用针对某目标物体训练的级联分类器在图像中找到包含目标物体的矩形区域,并且将这些区域作为一序列的矩形框返回。函数以不同比例大小的扫描窗口对图像进行几次搜索(察看cvSetImagesForHaarClassifierCascade)。 每次都要对图像中的这些重叠区域利用cvRunHaarClassifierCascade进行检测。 有时候也会利用某些继承(heuristics)技术以减少分析的候选区域,例如利用 Canny 裁减 (prunning)方法。 函数在处理和收集到候选的方框(全部通过级联分类器各层的区域)之后,接着对这些区域进行组合并且返回一系列各个足够大的组合中的平均矩形。

调节程序中的缺省参数(scale_factor=1.1, min_neighbors=3, flags=0)用于对目标进行更精确同时也是耗时较长的进一步检测。

为了能对视频图像进行更快的实时检测,参数设置通常是:scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, min_size=<minimum possible face size>

 

你可能感兴趣的:(opencv参考手册里面有个 [人脸检测] 的程序)