ACM第三次练习—1017

题意:一个人收集骨头。给出他的背包容量和可选的骨头的体积和价值,输出他的背包能装下的骨头的最大价值。

思路:01背包问题,DP公式都类似:F[i;v] = maxfF[i-1;v];F[i-1;v-Ci] + Wi,由这个公式做变形就可以。下面再来分析一下这个公式:

每种骨头仅有一件,可以选择放或不放。用子问题定义状态:即F[i;v] 表示前i 件物品恰放入一个容量为v的背包可以获得的最大价值。“将前i 个骨头放入容量为v的背包中”这个子问题,若只考虑第i 个骨头的策略(放或不放),那么就可以转化为一个只和前i-1个骨头相关的问题。如果不放第i 个骨头,那么问题就转化为“前i-1个骨头放入容量为v的背包中”,价值为F[i-1; v];如果放第i 个骨头,那么问题就转化为“前i-1个骨头放入剩下的容量为v-Ci 的背包中”,此时能获得的最大价值就是F[i-1;v-Ci] 再加上通过放入第i 个骨头获得的价值Wi。

感想:01背包是最简单的背包问题,衍生出来的那些就有些搞不懂了。

代码;

#include<iostream>
#include<stdio.h>  
#include<string>  
#define M 1009
using namespace std; 
typedef struct pack  
{  
    int cost;  
    int val;  
}PACK;  
int f[M][M];  
int main()
{  
    int cas,n,v,i,j;  
  
    PACK a[M];  
    scanf("%d",&cas);  
    while(cas--)  
    {  
        scanf("%d%d",&n,&v);  
        memset(f,0,sizeof(f));  
        for(i=1;i<=n;i++)  
            scanf("%d",&a[i].val);
      for(i=1;i<=n;i++)  
            scanf("%d",&a[i].cost);  
        for(i=1;i<=n;i++)  
            for(j=0;j<=v;j++)  
                if(j-a[i].cost>=0&&f[i-1][j]<f[i-1][j-a[i].cost]+a[i].val)  
                    f[i][j]=f[i-1][j-a[i].cost]+a[i].val;  
                else  
                    f[i][j]=f[i-1][j];  
        printf("%d\n",f[n][v]);  
    }  
    return 0;  
}

你可能感兴趣的:(ACM第三次练习—1017)