也就是tanimoto相关度能够很好的解决01关系, 也就是是否关系, 比如是否看过某部电影; 而皮尔逊相关度能够很好的解决一些用程度衡量的, 比如为某部电影打分就是程度
其中用到的数据来自集体智慧编程的作者
只是把距离函数改掉了:
#coding:utf-8 import os import sys import chardet from math import sqrt from PIL import Image, ImageDraw import random def readFile(fileName): lines = [line for line in file(fileName)] colNames = lines[0].strip().split('\t')[1:] rowNames = [] data = [] for line in lines[1:]: p = line.strip().split('\t') rowNames.append(p[0]) data.append([float(x) for x in p[1:]]) return rowNames, colNames, data def pearsonBeta(v1, v2): sum1 = sum(v1) sum2 = sum(v2) sum1Sq = sum([pow(v, 2) for v in v1]) sum2Sq = sum([pow(v, 2) for v in v2]) pSum = sum([v1[i] * v2[i] for i in range(len(v1))]) nums = pSum - (sum1 * sum2 / len(v1)) den = sqrt((sum1Sq - pow(sum1, 2) / len(v1)) * (sum2Sq - pow(sum2, 2) / len(v2))) if(den == 0): return 0 return 1.0 - nums/den #距离函数 def pearson(v1, v2): sum1 = sum(v1) sum2 = sum(v2) eSum1 = sum1 / len(v1) eSum2 = sum2 / len(v2) pSum = sum([(v1[i] - eSum1) * (v2[i] - eSum2) for i in range(len(v1))]) pTmp1 = sqrt(sum([pow(v1[i] -eSum1, 2) for i in range(len(v1))])) pTmp2 = sqrt(sum([pow(v2[i] -eSum2, 2) for i in range(len(v2))])) pSqrtSum = pTmp1 * pTmp2 if pSqrtSum == 0: return 0 return 1 - pSum / pSqrtSum #距离函数2 def tanimoto(v1, v2): c1, c2, shr = 0, 0, 0 for i in range(len(v1)): if v1[i] != 0: c1 += 1 if v2[i] != 0: c2 += 1 if v1[i] != 0 and v2[i] != 0: shr += 1 return 1.0 - float(shr) / (float(c1 + c2 - shr)) class bicluster: def __init__(self, vec, left = None, right = None, distance = 0.0, id = None): self.vec = vec self.left = left self.right = right self.distance = distance self.id = id def vis(self): print self.vec #层次聚类 def hCluster(rows, distanceFunc = pearson): distances = {} currentClustId = -1 clust = [bicluster(rows[i], id = i) for i in range(len(rows))] while len(clust) > 1: lowestPair = (0, 1) closest = distanceFunc(clust[0].vec, clust[1].vec) for i in range(len(clust)): for j in range(i + 1, len(clust)): if(clust[i].id, clust[j].id) not in distances: distances[(clust[i].id, clust[j].id)] = distanceFunc(clust[i].vec, clust[j].vec) d = distances[(clust[i].id, clust[j].id)] #直接写成了i,j , 害我找了半天 if d < closest: closest = d lowestPair = (i, j) mergevec = [(clust[lowestPair[0]].vec[i] + clust[lowestPair[1]].vec[i]) / 2.0 for i in range(len(clust[0].vec))] newCluster = bicluster(mergevec, left = clust[lowestPair[0]], right = clust[lowestPair[1]], distance = closest, id = currentClustId) currentClustId -= 1 del clust[lowestPair[1]] #must first del 1, then 0 del clust[lowestPair[0]] clust.append(newCluster) return clust[0] #k-均值聚类 def kcluster(rows, distanceFunc = pearson, k = 5): ranges = [(min(row[i] for row in rows), max(row[i] for row in rows)) for i in range(len(rows[0]))] clusters = [[random.random() * (ranges[i][1] - ranges[i][0]) + ranges[i][0] for i in range(len(rows[0]))] for j in range(k)] bestMatches = None for t in range(100): print "iter is: %d" %(t) lastMatches = [[] for i in range(k)] for i in range(len(rows)): row = rows[i] lastMatch = 0 for j in range(k): d = distanceFunc(clusters[j], row) if d < distanceFunc(rows[lastMatch], row): lastMatch = j lastMatches[lastMatch].append(i) if lastMatches == bestMatches: break; bestMatches = lastMatches #move center for i in range(k): if len(bestMatches[i]) > 0: newRow = [] for j in range(len(rows[0])): sum = 0 for v in range(len(bestMatches[i])): sum += rows[v][j] newRow.append(sum) for j in range(len(newRow)): newRow[j] = newRow[j] / len(bestMatches[i]) clusters[i] = newRow return bestMatches #以缩进方式打印层次聚类的树 def printClust(clust, labels = None, n = 0): for i in range(n):print ' ', if clust.id < 0: print '-' else: if labels == None: print clust.id else: print labels[clust.id] if clust.left != None: printClust(clust.left, labels = labels, n = n + 1) if clust.right != None: printClust(clust.right, labels = labels, n = n + 1) def getHeight(clust): if clust.left == None and clust.right == None: return 1 return getHeight(clust.left) + getHeight(clust.right) def getDepth(clust): if clust.left == None and clust.right == None: return 1 return max(getDepth(clust.left), getDepth(clust.right)) + clust.distance def drawnode(draw, clust, x, y, scaling, labels): if clust.id < 0: h1 = getHeight(clust.left) * 20 h2 = getHeight(clust.right) * 20 top = y - (h1 + h2) / 2 bottom = y + (h1 + h2) / 2 li = clust.distance * scaling draw.line((x, top + h1/2, x, bottom - h2/2), fill = (255, 0, 0)) draw.line((x, top + h1/2, x + li, top + h1/2), fill = (255, 0, 0)) draw.line((x ,bottom - h2/2, x + li, bottom - h2/2), fill = (255, 0, 0)) drawnode(draw, clust.left, x + li, top + h1/2, scaling, labels) drawnode(draw, clust.right, x + li, bottom - h2/2, scaling, labels) else: draw.text((x + 5, y - 7), labels[clust.id], (0, 0, 0)) #以属性结构打印层次聚类的关系 def drawdendrogram(clust, labels, jpeg = "zebo2.jpg"): h = getHeight(clust) * 20 w = 1200 depth = getDepth(clust) scaling = float(w - 150) / depth img = Image.new("RGB", (w, h), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.line((0, h/2, 10, h/2), fill = (255, 0, 0)) drawnode(draw, clust, 10, (h/2), scaling, labels) img.save(jpeg, "JPEG") (wants, people, data) = readFile("F:\\py\\dataFetch\\julei\\data\\zebo.txt") clust = hCluster(data, distanceFunc = tanimoto) #printClust(clust, wants) drawdendrogram(clust, wants) #print kcluster(data) #cluster = hCluster(data, distanceFunc = tanimoto) #drawdendrogram(cluster, rowNames)
从图中可以看到一些信息: 想要手机的人想拥有一只狗(好像不怎么准), 游戏机被聚在了一起;衣服鞋子也被聚在了一起, 想拥有男朋友的人貌似很普遍