哈夫曼树 之 Java详解

哈夫曼树的介绍

Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。

定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。

(01) 路径和路径长度

定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

例子:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。

(02) 结点的权及带权路径长度

定义:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。

例子:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。

(03) 树的带权路径长度

定义:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
例子:示例中,树的WPL= 1*100 + 2*80 + 3*20 + 3*10 = 100 + 160 + 60 + 30 = 350。

比较下面两棵树

上面的两棵树都是以{10, 20, 50, 100}为叶子节点的树。

左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360
右边的树WPL=350

左边的树WPL > 右边的树的WPL。你也可以计算除上面两种示例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。至此,应该堆哈夫曼树的概念有了一定的了解了,下面看看如何去构造一棵哈夫曼树。

哈夫曼树的图文解析

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,哈夫曼树的构造规则为:

  1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
  2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
  3. 从森林中删除选取的两棵树,并将新树加入森林;
  4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

以{5,6,7,8,15}为例,来构造一棵哈夫曼树。

哈夫曼树 之 Java详解_第1张图片

第1步:创建森林,森林包括5棵树,这5棵树的权值分别是5,6,7,8,15。
第2步:在森林中,选择根节点权值最小的两棵树(5和6)来进行合并,将它们作为一颗新树的左右孩子(谁左谁右无关紧要,这里,我们选择较小的作为左孩子),并且新树的权值是左右孩子的权值之和。即,新树的权值是11。 然后,将”树5”和”树6”从森林中删除,并将新的树(树11)添加到森林中。
第3步:在森林中,选择根节点权值最小的两棵树(7和8)来进行合并。得到的新树的权值是15。 然后,将”树7”和”树8”从森林中删除,并将新的树(树15)添加到森林中。
第4步:在森林中,选择根节点权值最小的两棵树(11和15)来进行合并。得到的新树的权值是26。 然后,将”树11”和”树15”从森林中删除,并将新的树(树26)添加到森林中。
第5步:在森林中,选择根节点权值最小的两棵树(15和26)来进行合并。得到的新树的权值是41。 然后,将”树15”和”树26”从森林中删除,并将新的树(树41)添加到森林中。
此时,森林中只有一棵树(树41)。这棵树就是我们需要的哈夫曼树!

哈夫曼树的基本操作

哈夫曼树的重点是如何构造哈夫曼树。本文构造哈夫曼时,用到了以前介绍过的”(二叉堆)最小堆”。下面对哈夫曼树进行讲解。

1. 基本定义

public class HuffmanNode implements Comparable, Cloneable {
    protected int key;              // 权值
    protected HuffmanNode left;     // 左孩子
    protected HuffmanNode right;    // 右孩子
    protected HuffmanNode parent;   // 父结点

    protected HuffmanNode(int key, HuffmanNode left, HuffmanNode right, HuffmanNode parent) {
        this.key = key;
        this.left = left;
        this.right = right;
        this.parent = parent;
    }

    @Override
    public Object clone() {
        Object obj=null;

        try {
            obj = (HuffmanNode)super.clone();//Object 中的clone()识别出你要复制的是哪一个对象。 
        } catch(CloneNotSupportedException e) {
            System.out.println(e.toString());
        }

        return obj;    
    }

    @Override
    public int compareTo(Object obj) {
        return this.key - ((HuffmanNode)obj).key;
    }
}

HuffmanNode是哈夫曼树的节点类。

public class Huffman {

    private HuffmanNode mRoot;  // 根结点

    ...
}

Huffman是哈夫曼树对应的类,它包含了哈夫曼树的根节点和哈夫曼树的相关操作。

2. 构造哈夫曼树

/* * 创建Huffman树 * * @param 权值数组 */
public Huffman(int a[]) {
    HuffmanNode parent = null;
    MinHeap heap;

    // 建立数组a对应的最小堆
    heap = new MinHeap(a);

    for(int i=0; i<a.length-1; i++) {   
        HuffmanNode left = heap.dumpFromMinimum();  // 最小节点是左孩子
        HuffmanNode right = heap.dumpFromMinimum(); // 其次才是右孩子

        // 新建parent节点,左右孩子分别是left/right;
        // parent的大小是左右孩子之和
        parent = new HuffmanNode(left.key+right.key, left, right, null);
        left.parent = parent;
        right.parent = parent;

        // 将parent节点数据拷贝到"最小堆"中
        heap.insert(parent);
    }

    mRoot = parent;

    // 销毁最小堆
    heap.destroy();
}

首先创建最小堆,然后进入for循环。

每次循环时:

(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将”交换位置后的最小节点”之前的全部元素重新构造成最小堆);
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆;
(03)然后,新建节点parent,并将它作为left和right的父节点;
(04) 接着,将parent的数据复制给最小堆中的指定节点。

在二叉堆中已经介绍过堆,这里就不再对堆的代码进行说明了。若有疑问,直接参考后文的源码。其它的相关代码,也Please RTFSC(Read The Fucking Source Code)!

哈夫曼树的完整源码

哈夫曼树的源码共包括4个文件。

1. 哈夫曼树的节点类(HuffmanNode.java)

/** * Huffman节点类(Huffman.java的辅助类) * * @author skywang * @date 2014/03/27 */

public class HuffmanNode implements Comparable, Cloneable {
    protected int key;              // 权值
    protected HuffmanNode left;     // 左孩子
    protected HuffmanNode right;    // 右孩子
    protected HuffmanNode parent;   // 父结点

    protected HuffmanNode(int key, HuffmanNode left, HuffmanNode right, HuffmanNode parent) {
        this.key = key;
        this.left = left;
        this.right = right;
        this.parent = parent;
    }

    @Override
    public Object clone() {
        Object obj=null;

        try {
            obj = (HuffmanNode)super.clone();//Object 中的clone()识别出你要复制的是哪一个对象。 
        } catch(CloneNotSupportedException e) {
            System.out.println(e.toString());
        }

        return obj;    
    }

    @Override
    public int compareTo(Object obj) {
        return this.key - ((HuffmanNode)obj).key;
    }
}

2. 哈夫曼树的实现文件(Huffman.java)

/** * Huffman树 * * @author skywang * @date 2014/03/27 */

import java.util.List;
import java.util.ArrayList;
import java.util.Collections;

public class Huffman {

    private HuffmanNode mRoot;  // 根结点

    /* * 创建Huffman树 * * @param 权值数组 */
    public Huffman(int a[]) {
        HuffmanNode parent = null;
        MinHeap heap;

        // 建立数组a对应的最小堆
        heap = new MinHeap(a);

        for(int i=0; i<a.length-1; i++) {   
            HuffmanNode left = heap.dumpFromMinimum();  // 最小节点是左孩子
            HuffmanNode right = heap.dumpFromMinimum(); // 其次才是右孩子

            // 新建parent节点,左右孩子分别是left/right;
            // parent的大小是左右孩子之和
            parent = new HuffmanNode(left.key+right.key, left, right, null);
            left.parent = parent;
            right.parent = parent;

            // 将parent节点数据拷贝到"最小堆"中
            heap.insert(parent);
        }

        mRoot = parent;

        // 销毁最小堆
        heap.destroy();
    }

    /* * 前序遍历"Huffman树" */
    private void preOrder(HuffmanNode tree) {
        if(tree != null) {
            System.out.print(tree.key+" ");
            preOrder(tree.left);
            preOrder(tree.right);
        }
    }

    public void preOrder() {
        preOrder(mRoot);
    }

    /* * 中序遍历"Huffman树" */
    private void inOrder(HuffmanNode tree) {
        if(tree != null) {
            inOrder(tree.left);
            System.out.print(tree.key+" ");
            inOrder(tree.right);
        }
    }

    public void inOrder() {
        inOrder(mRoot);
    }


    /* * 后序遍历"Huffman树" */
    private void postOrder(HuffmanNode tree) {
        if(tree != null)
        {
            postOrder(tree.left);
            postOrder(tree.right);
            System.out.print(tree.key+" ");
        }
    }

    public void postOrder() {
        postOrder(mRoot);
    }

    /* * 销毁Huffman树 */
    private void destroy(HuffmanNode tree) {
        if (tree==null)
            return ;

        if (tree.left != null)
            destroy(tree.left);
        if (tree.right != null)
            destroy(tree.right);

        tree=null;
    }

    public void destroy() {
        destroy(mRoot);
        mRoot = null;
    }

    /* * 打印"Huffman树" * * key -- 节点的键值 * direction -- 0,表示该节点是根节点; * -1,表示该节点是它的父结点的左孩子; * 1,表示该节点是它的父结点的右孩子。 */
    private void print(HuffmanNode tree, int key, int direction) {

        if(tree != null) {

            if(direction==0)    // tree是根节点
                System.out.printf("%2d is root\n", tree.key);
            else                // tree是分支节点
                System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

            print(tree.left, tree.key, -1);
            print(tree.right,tree.key,  1);
        }
    }

    public void print() {
        if (mRoot != null)
            print(mRoot, mRoot.key, 0);
    }
}

3. 哈夫曼树对应的最小堆(MinHeap.java)

/** * 最小堆(Huffman.java的辅助类) * * @author skywang * @date 2014/03/27 */

import java.util.ArrayList;
import java.util.List;

public class MinHeap {

    private List<HuffmanNode> mHeap;        // 存放堆的数组

    /* * 创建最小堆 * * 参数说明: * a -- 数据所在的数组 */
    protected MinHeap(int a[]) {
        mHeap = new ArrayList<HuffmanNode>();
        // 初始化数组
        for(int i=0; i<a.length; i++) {
            HuffmanNode node = new HuffmanNode(a[i], null, null, null);
            mHeap.add(node);
        }

        // 从(size/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个最小堆。
        for (int i = a.length / 2 - 1; i >= 0; i--)
            filterdown(i, a.length-1);
    }

    /* * 最小堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */
    protected void filterdown(int start, int end) {
        int c = start;      // 当前(current)节点的位置
        int l = 2*c + 1;    // 左(left)孩子的位置
        HuffmanNode tmp = mHeap.get(c); // 当前(current)节点

        while(l <= end) {
            // "l"是左孩子,"l+1"是右孩子
            if(l < end && (mHeap.get(l).compareTo(mHeap.get(l+1))>0))
                l++;        // 左右两孩子中选择较小者,即mHeap[l+1]

            int cmp = tmp.compareTo(mHeap.get(l));
            if(cmp <= 0)
                break;      //调整结束
            else {
                mHeap.set(c, mHeap.get(l));
                c = l;
                l = 2*l + 1;   
            }       
        }   
        mHeap.set(c, tmp);
    }

    /* * 最小堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */
    protected void filterup(int start) {
        int c = start;          // 当前节点(current)的位置
        int p = (c-1)/2;        // 父(parent)结点的位置 
        HuffmanNode tmp = mHeap.get(c); // 当前(current)节点

        while(c > 0) {
            int cmp = mHeap.get(p).compareTo(tmp);
            if(cmp <= 0)
                break;
            else {
                mHeap.set(c, mHeap.get(p));
                c = p;
                p = (p-1)/2;   
            }       
        }
        mHeap.set(c, tmp);
    } 

    /* * 将node插入到二叉堆中 */
    protected void insert(HuffmanNode node) {
        int size = mHeap.size();

        mHeap.add(node);    // 将"数组"插在表尾
        filterup(size);     // 向上调整堆
    }

    /* * 交换两个HuffmanNode节点的全部数据 */
    private void swapNode(int i, int j) {
        HuffmanNode tmp = mHeap.get(i);
        mHeap.set(i, mHeap.get(j));
        mHeap.set(j, tmp);
    }

    /* * 新建一个节点,并将最小堆中最小节点的数据复制给该节点。 * 然后除最小节点之外的数据重新构造成最小堆。 * * 返回值: * 失败返回null。 */
    protected HuffmanNode dumpFromMinimum() {
        int size = mHeap.size();

        // 如果"堆"已空,则返回
        if(size == 0)
            return null;

        // 将"最小节点"克隆一份,将克隆得到的对象赋值给node
        HuffmanNode node = (HuffmanNode)mHeap.get(0).clone();

        // 交换"最小节点"和"最后一个节点"
        mHeap.set(0, mHeap.get(size-1));
        // 删除最后的元素
        mHeap.remove(size-1);

        if (mHeap.size() > 1)
            filterdown(0, mHeap.size()-1);

        return node;
    }

    // 销毁最小堆
    protected void destroy() {
        mHeap.clear();
        mHeap = null;
    }
}

4. 哈夫曼树的测试程序(HuffmanTest.java)

/** * Huffman树的测试程序 * * @author skywang * @date 2014/03/27 */

public class HuffmanTest {

    private static final int a[]= {5,6,8,7,15};

    public static void main(String[] args) {
        int i;
        Huffman tree;

        System.out.print("== 添加数组: ");
        for(i=0; i<a.length; i++) 
            System.out.print(a[i]+" ");

        // 创建数组a对应的Huffman树
        tree = new Huffman(a);

        System.out.print("\n== 前序遍历: ");
        tree.preOrder();

        System.out.print("\n== 中序遍历: ");
        tree.inOrder();

        System.out.print("\n== 后序遍历: ");
        tree.postOrder();
        System.out.println();

        System.out.println("== 树的详细信息: ");
        tree.print();

        // 销毁二叉树
        tree.destroy();
    }
}

转载自:哈夫曼树(三)之 Java详解

你可能感兴趣的:(二叉树)