本文转自:http://stackoverflow.com/questions/25494595/multiple-object-tracking-with-kalman-filter。
代码流程:
1 Background Subtract
2 Smoothing , Blur etc. filters.
3 Find Contours
4 Draw Rectangle and find Centroid.
5 Apply Kalman Filter
#include <iostream> #include <opencv2/opencv.hpp> //#include <opencv2/video/background_segm.hpp> using namespace std; using namespace cv; #define drawCross( img, center, color, d )\ line(img, Point(center.x - d, center.y - d), Point(center.x + d, center.y + d), color, 2, CV_AA, 0);\ line(img, Point(center.x + d, center.y - d), Point(center.x - d, center.y + d), color, 2, CV_AA, 0 )\ vector<Point> mousev,kalmanv; cv::KalmanFilter KF; cv::Mat_<float> measurement(2,1); Mat_<float> state(4, 1); // (x, y, Vx, Vy) int incr=0; void initKalman(float x, float y) { // Instantate Kalman Filter with // 4 dynamic parameters and 2 measurement parameters, // where my measurement is: 2D location of object, // and dynamic is: 2D location and 2D velocity. KF.init(4, 2, 0); measurement = Mat_<float>::zeros(2,1); measurement.at<float>(0, 0) = x; measurement.at<float>(0, 0) = y; KF.statePre.setTo(0); KF.statePre.at<float>(0, 0) = x; KF.statePre.at<float>(1, 0) = y; KF.statePost.setTo(0); KF.statePost.at<float>(0, 0) = x; KF.statePost.at<float>(1, 0) = y; setIdentity(KF.transitionMatrix); setIdentity(KF.measurementMatrix); setIdentity(KF.processNoiseCov, Scalar::all(.005)); //adjust this for faster convergence - but higher noise setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); setIdentity(KF.errorCovPost, Scalar::all(.1)); } Point kalmanPredict() { Mat prediction = KF.predict(); Point predictPt(prediction.at<float>(0),prediction.at<float>(1)); KF.statePre.copyTo(KF.statePost); KF.errorCovPre.copyTo(KF.errorCovPost); return predictPt; } Point kalmanCorrect(float x, float y) { measurement(0) = x; measurement(1) = y; Mat estimated = KF.correct(measurement); Point statePt(estimated.at<float>(0),estimated.at<float>(1)); return statePt; } int main() { Mat frame, thresh_frame; vector<Mat> channels; VideoCapture capture; vector<Vec4i> hierarchy; vector<vector<Point> > contours; // cv::Mat frame; cv::Mat back; cv::Mat fore; cv::BackgroundSubtractorMOG2 bg; //bg.nmixtures = 3;//nmixtures //bg.bShadowDetection = false; int incr=0; int track=0; capture.open("4.avi"); if(!capture.isOpened()) cerr << "Problem opening video source" << endl; mousev.clear(); kalmanv.clear(); initKalman(0, 0); while((char)waitKey(1) != 'q' && capture.grab()) { Point s, p; capture.retrieve(frame); bg.operator ()(frame,fore); bg.getBackgroundImage(back); erode(fore,fore,Mat()); erode(fore,fore,Mat()); dilate(fore,fore,Mat()); dilate(fore,fore,Mat()); dilate(fore,fore,Mat()); dilate(fore,fore,Mat()); dilate(fore,fore,Mat()); dilate(fore,fore,Mat()); dilate(fore,fore,Mat()); cv::normalize(fore, fore, 0, 1., cv::NORM_MINMAX); cv::threshold(fore, fore, .5, 1., CV_THRESH_BINARY); split(frame, channels); add(channels[0], channels[1], channels[1]); subtract(channels[2], channels[1], channels[2]); threshold(channels[2], thresh_frame, 50, 255, CV_THRESH_BINARY); medianBlur(thresh_frame, thresh_frame, 5); // imshow("Red", channels[1]); findContours(fore, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); vector<vector<Point> > contours_poly( contours.size() ); vector<Rect> boundRect( contours.size() ); Mat drawing = Mat::zeros(thresh_frame.size(), CV_8UC1); for(size_t i = 0; i < contours.size(); i++) { // cout << contourArea(contours[i]) << endl; if(contourArea(contours[i]) > 500) drawContours(drawing, contours, i, Scalar::all(255), CV_FILLED, 8, vector<Vec4i>(), 0, Point()); } thresh_frame = drawing; findContours(fore, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); drawing = Mat::zeros(thresh_frame.size(), CV_8UC1); for(size_t i = 0; i < contours.size(); i++) { // cout << contourArea(contours[i]) << endl; if(contourArea(contours[i]) > 3000) drawContours(drawing, contours, i, Scalar::all(255), CV_FILLED, 8, vector<Vec4i>(), 0, Point()); } thresh_frame = drawing; // Get the moments vector<Moments> mu(contours.size() ); for( size_t i = 0; i < contours.size(); i++ ) { mu[i] = moments( contours[i], false ); } // Get the mass centers: vector<Point2f> mc( contours.size() ); for( size_t i = 0; i < contours.size(); i++ ) { mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 ); /* for(size_t i = 0; i < mc.size(); i++) { // drawCross(frame, mc[i], Scalar(255, 0, 0), 5); //measurement(0) = mc[i].x; //measurement(1) = mc[i].y; // line(frame, p, s, Scalar(255,255,0), 1); // if (measurement(1) <= 130 && measurement(1) >= 120) { // incr++; // cout << "Conter " << incr << " Loation " << measurement(1) << endl; // } }*/ } for( size_t i = 0; i < contours.size(); i++ ) { approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true ); boundRect[i] = boundingRect( Mat(contours_poly[i]) ); } p = kalmanPredict(); // cout << "kalman prediction: " << p.x << " " << p.y << endl; mousev.push_back(p); for( size_t i = 0; i < contours.size(); i++ ) { if(contourArea(contours[i]) > 1000){ rectangle( frame, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 2, 8, 0 ); Point center = Point(boundRect[i].x + (boundRect[i].width /2), boundRect[i].y + (boundRect[i].height/2)); cv::circle(frame,center, 8, Scalar(0, 0, 255), -1, 1,0); s = kalmanCorrect(center.x, center.y); drawCross(frame, s, Scalar(255, 255, 255), 5); if (s.y <= 130 && p.y > 130 && s.x > 15) { incr++; cout << "Counter " << incr << endl; } for (int i = mousev.size()-20; i < mousev.size()-1; i++) { line(frame, mousev[i], mousev[i+1], Scalar(0,255,0), 1); } } } imshow("Video", frame); imshow("Red", channels[2]); imshow("Binary", thresh_frame); } return 0; }