矩阵A的伪逆(Moore-Penrose pseudoinverse)定义为:A+=VD+UT,其中,U,D和V是矩阵A奇异值分解后得到的矩阵。对角矩阵D的伪逆D+是非零元素取倒数之后再转置得到的。
当矩阵A的列数多于行数时,使用伪逆求解线性方程是众多可能解法中的一种。特别地,x=A+y是方程所有可行解中欧几里得范数‖x‖2最小的一个。
当矩阵A的行数多于列数时,可能没有解。在这种情况下,通过伪逆得到的x使得Ax和y的欧几里得距离‖Ax-y‖2最小。
广义逆阵(generalized inverse)也称为伪逆矩阵(pseudoinverse),是在数学矩阵领域内的名词,一矩阵A的广义逆阵是指另一矩阵具有部分逆矩阵的特性,但是不一定具有逆矩阵的所有特性。假设一矩阵A∈Rn*m及另一矩阵Ag∈m*n,若Ag满足此条件,AAgA=A,则Ag即为A的逆矩阵。构建广义逆阵的目的是针对可逆矩阵以外的矩阵(例如非方阵的矩阵)可以找到一矩阵有一些类似逆矩阵的特性。任意的矩阵都存在广义逆阵,若一矩阵存在逆矩阵,逆矩阵即为其唯一的广义逆阵。有些广义逆阵可以定义在和结合律乘法有关的数学结构中。可以借助SVD(奇异值分解)来求解伪逆。
以上内容摘自:《深度学习中文版》 和 维基百科
以下是分别采用C++和OpenCV实现的求矩阵伪逆:
#include "funset.hpp" #include <math.h> #include <iostream> #include <string> #include <vector> #include <opencv2/opencv.hpp> #include "common.hpp" // ================================= 求伪逆矩阵 ================================= template<typename _Tp> int pinv(const std::vector<std::vector<_Tp>>& src, std::vector<std::vector<_Tp>>& dst, _Tp tolerance) { std::vector<std::vector<_Tp>> D, U, Vt; if (svd(src, D, U, Vt) != 0) { fprintf(stderr, "singular value decomposition fail\n"); return -1; } int m = src.size(); int n = src[0].size(); std::vector<std::vector<_Tp>> Drecip, DrecipT, Ut, V; transpose(Vt, V); transpose(U, Ut); if (m < n) std::swap(m, n); Drecip.resize(n); for (int i = 0; i < n; ++i) { Drecip[i].resize(m, (_Tp)0); if (D[i][0] > tolerance) Drecip[i][i] = 1.0f / D[i][0]; } if (src.size() < src[0].size()) transpose(Drecip, DrecipT); else DrecipT = Drecip; std::vector<std::vector<_Tp>> tmp = matrix_mul(V, DrecipT); dst = matrix_mul(tmp, Ut); return 0; } template<typename _Tp> // mat1(m, n) * mat2(n, p) => result(m, p) static std::vector<std::vector<_Tp>> matrix_mul(const std::vector<std::vector<_Tp>>& mat1, const std::vector<std::vector<_Tp>>& mat2) { std::vector<std::vector<_Tp>> result; int m1 = mat1.size(), n1 = mat1[0].size(); int m2 = mat2.size(), n2 = mat2[0].size(); if (n1 != m2) { fprintf(stderr, "mat dimension dismatch\n"); return result; } result.resize(m1); for (int i = 0; i < m1; ++i) { result[i].resize(n2, (_Tp)0); } for (int y = 0; y < m1; ++y) { for (int x = 0; x < n2; ++x) { for (int t = 0; t < n1; ++t) { result[y][x] += mat1[y][t] * mat2[t][x]; } } } return result; } // ================================= 矩阵奇异值分解 ================================= template<typename _Tp> static void JacobiSVD(std::vector<std::vector<_Tp>>& At, std::vector<std::vector<_Tp>>& _W, std::vector<std::vector<_Tp>>& Vt) { double minval = FLT_MIN; _Tp eps = (_Tp)(FLT_EPSILON * 2); const int m = At[0].size(); const int n = _W.size(); const int n1 = m; // urows std::vector<double> W(n, 0.); for (int i = 0; i < n; i++) { double sd{0.}; for (int k = 0; k < m; k++) { _Tp t = At[i][k]; sd += (double)t*t; } W[i] = sd; for (int k = 0; k < n; k++) Vt[i][k] = 0; Vt[i][i] = 1; } int max_iter = std::max(m, 30); for (int iter = 0; iter < max_iter; iter++) { bool changed = false; _Tp c, s; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { _Tp *Ai = At[i].data(), *Aj = At[j].data(); double a = W[i], p = 0, b = W[j]; for (int k = 0; k < m; k++) p += (double)Ai[k] * Aj[k]; if (std::abs(p) <= eps * std::sqrt((double)a*b)) continue; p *= 2; double beta = a - b, gamma = hypot_((double)p, beta); if (beta < 0) { double delta = (gamma - beta)*0.5; s = (_Tp)std::sqrt(delta / gamma); c = (_Tp)(p / (gamma*s * 2)); } else { c = (_Tp)std::sqrt((gamma + beta) / (gamma * 2)); s = (_Tp)(p / (gamma*c * 2)); } a = b = 0; for (int k = 0; k < m; k++) { _Tp t0 = c*Ai[k] + s*Aj[k]; _Tp t1 = -s*Ai[k] + c*Aj[k]; Ai[k] = t0; Aj[k] = t1; a += (double)t0*t0; b += (double)t1*t1; } W[i] = a; W[j] = b; changed = true; _Tp *Vi = Vt[i].data(), *Vj = Vt[j].data(); for (int k = 0; k < n; k++) { _Tp t0 = c*Vi[k] + s*Vj[k]; _Tp t1 = -s*Vi[k] + c*Vj[k]; Vi[k] = t0; Vj[k] = t1; } } } if (!changed) break; } for (int i = 0; i < n; i++) { double sd{ 0. }; for (int k = 0; k < m; k++) { _Tp t = At[i][k]; sd += (double)t*t; } W[i] = std::sqrt(sd); } for (int i = 0; i < n - 1; i++) { int j = i; for (int k = i + 1; k < n; k++) { if (W[j] < W[k]) j = k; } if (i != j) { std::swap(W[i], W[j]); for (int k = 0; k < m; k++) std::swap(At[i][k], At[j][k]); for (int k = 0; k < n; k++) std::swap(Vt[i][k], Vt[j][k]); } } for (int i = 0; i < n; i++) _W[i][0] = (_Tp)W[i]; srand(time(nullptr)); for (int i = 0; i < n1; i++) { double sd = i < n ? W[i] : 0; for (int ii = 0; ii < 100 && sd <= minval; ii++) { // if we got a zero singular value, then in order to get the corresponding left singular vector // we generate a random vector, project it to the previously computed left singular vectors, // subtract the projection and normalize the difference. const _Tp val0 = (_Tp)(1. / m); for (int k = 0; k < m; k++) { unsigned int rng = rand() % 4294967295; // 2^32 - 1 _Tp val = (rng & 256) != 0 ? val0 : -val0; At[i][k] = val; } for (int iter = 0; iter < 2; iter++) { for (int j = 0; j < i; j++) { sd = 0; for (int k = 0; k < m; k++) sd += At[i][k] * At[j][k]; _Tp asum = 0; for (int k = 0; k < m; k++) { _Tp t = (_Tp)(At[i][k] - sd*At[j][k]); At[i][k] = t; asum += std::abs(t); } asum = asum > eps * 100 ? 1 / asum : 0; for (int k = 0; k < m; k++) At[i][k] *= asum; } } sd = 0; for (int k = 0; k < m; k++) { _Tp t = At[i][k]; sd += (double)t*t; } sd = std::sqrt(sd); } _Tp s = (_Tp)(sd > minval ? 1 / sd : 0.); for (int k = 0; k < m; k++) At[i][k] *= s; } } // matSrc为原始矩阵,支持非方阵,matD存放奇异值,matU存放左奇异向量,matVt存放转置的右奇异向量 template<typename _Tp> int svd(const std::vector<std::vector<_Tp>>& matSrc, std::vector<std::vector<_Tp>>& matD, std::vector<std::vector<_Tp>>& matU, std::vector<std::vector<_Tp>>& matVt) { int m = matSrc.size(); int n = matSrc[0].size(); for (const auto& sz : matSrc) { if (n != sz.size()) { fprintf(stderr, "matrix dimension dismatch\n"); return -1; } } bool at = false; if (m < n) { std::swap(m, n); at = true; } matD.resize(n); for (int i = 0; i < n; ++i) { matD[i].resize(1, (_Tp)0); } matU.resize(m); for (int i = 0; i < m; ++i) { matU[i].resize(m, (_Tp)0); } matVt.resize(n); for (int i = 0; i < n; ++i) { matVt[i].resize(n, (_Tp)0); } std::vector<std::vector<_Tp>> tmp_u = matU, tmp_v = matVt; std::vector<std::vector<_Tp>> tmp_a, tmp_a_; if (!at) transpose(matSrc, tmp_a); else tmp_a = matSrc; if (m == n) { tmp_a_ = tmp_a; } else { tmp_a_.resize(m); for (int i = 0; i < m; ++i) { tmp_a_[i].resize(m, (_Tp)0); } for (int i = 0; i < n; ++i) { tmp_a_[i].assign(tmp_a[i].begin(), tmp_a[i].end()); } } JacobiSVD(tmp_a_, matD, tmp_v); if (!at) { transpose(tmp_a_, matU); matVt = tmp_v; } else { transpose(tmp_v, matU); matVt = tmp_a_; } return 0; } int test_pseudoinverse() { //std::vector<std::vector<float>> vec{ { 0.68f, 0.597f }, // { -0.211f, 0.823f }, // { 0.566f, -0.605f } }; //const int rows{ 3 }, cols{ 2 }; std::vector<std::vector<float>> vec{ { 0.68f, 0.597f, -0.211f }, { 0.823f, 0.566f, -0.605f } }; const int rows{ 2 }, cols{ 3 }; fprintf(stderr, "source matrix:\n"); print_matrix(vec); fprintf(stderr, "\nc++ implement pseudoinverse:\n"); std::vector<std::vector<float>> pinv1; float pinvtoler = 1.e-6; if (pinv(vec, pinv1, pinvtoler) != 0) { fprintf(stderr, "C++ implement pseudoinverse fail\n"); return -1; } print_matrix(pinv1); fprintf(stderr, "\nopencv implement pseudoinverse:\n"); cv::Mat mat(rows, cols, CV_32FC1); for (int y = 0; y < rows; ++y) { for (int x = 0; x < cols; ++x) { mat.at<float>(y, x) = vec.at(y).at(x); } } cv::Mat pinv2; cv::invert(mat, pinv2, cv::DECOMP_SVD); print_matrix(pinv2); return 0; }执行结果如下:
以下是采用Eigen实现的求矩阵伪逆code:
#include "funset.hpp" #include <math.h> #include <iostream> #include <vector> #include <string> #include <opencv2/opencv.hpp> #include <Eigen/Dense> #include "common.hpp" int test_pseudoinverse() { //std::vector<std::vector<float>> vec{ { 0.68f, 0.597f }, // { -0.211f, 0.823f }, // { 0.566f, -0.605f } }; //const int rows{ 3 }, cols{ 2 }; std::vector<std::vector<float>> vec{ { 0.68f, 0.597f, -0.211f }, { 0.823f, 0.566f, -0.605f } }; const int rows{ 2 }, cols{ 3 }; std::vector<float> vec_; for (int i = 0; i < rows; ++i) { vec_.insert(vec_.begin() + i * cols, vec[i].begin(), vec[i].end()); } Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> m(vec_.data(), rows, cols); fprintf(stderr, "source matrix:\n"); std::cout << m << std::endl; fprintf(stderr, "\nEigen implement pseudoinverse:\n"); auto svd = m.jacobiSvd(Eigen::ComputeFullU | Eigen::ComputeFullV); const auto &singularValues = svd.singularValues(); Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> singularValuesInv(m.cols(), m.rows()); singularValuesInv.setZero(); double pinvtoler = 1.e-6; // choose your tolerance wisely for (unsigned int i = 0; i < singularValues.size(); ++i) { if (singularValues(i) > pinvtoler) singularValuesInv(i, i) = 1.0f / singularValues(i); else singularValuesInv(i, i) = 0.f; } Eigen::MatrixXf pinvmat = svd.matrixV() * singularValuesInv * svd.matrixU().transpose(); std::cout << pinvmat << std::endl; return 0; }执行结果如下:
由以上结果可见:C++、OpenCV、Eigen实现结果是一致的。
GitHub:
https://github.com/fengbingchun/NN_Test
https://github.com/fengbingchun/Eigen_Test