完整的项目:https://github.com/JeemyJohn/SparkToEs.git
由于项目需要,最近搞Spark Streaming做数据分析,并最终将分析完的数据写入ElasticSearch。我们项目使用的是Spark 2.1.0,而我们公司的ElasticSearch版本使用的是2.1.2。项目过程中遇到了很多坑,浪费了不少时间,故此在这里总结一下,希望大家以后免于趟这些坑以节约时间做一些更有意义的事。由于Maven依赖很长,故此放在最后,请参看: 3. 添加Maven依赖
/** * Created by zhanghuayan on 2017/4/6. */
class MyValue {
var hostIp = ""
var remoteIp = ""
override def toString: String = {
"(" + this.hostIp + " " + this.remoteIp + ")"
}
}
出现“org.apache.spark.SparkException: Task not serializable”这个错误,一般是因为在map、filter等的参数使用了外部的变量,但是这个变量不能序列化(不是说不可以引用外部变量,只是要做好序列化工作,具体后面详述)。其中最普遍的情形是:当引用了某个类(经常是当前类)的成员函数或变量时,会导致这个类的所有成员(整个类)都需要支持序列化。虽然许多情形下,当前类使用了“extends Serializable”声明支持序列化,但是由于某些字段不支持序列化,仍然会导致整个类序列化时出现问题,最终导致出现Task未序列化问题。所以在Spark中定义类应该加上extends Serializable
,如下所示:
/** * Created by zhanghuayan on 2017/4/6. */
class MyValue extends Serializable {
var hostIp = ""
var remoteIp = ""
override def toString: String = {
"(" + this.hostIp + " " + this.remoteIp + ")"
}
}
首先,Spark写ElasticSearch需要使用使用 elasticsearch-hadoop 依赖:
<!-- https://mvnrepository.com/artifact/org.elasticsearch/elasticsearch-hadoop -->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-hadoop</artifactId>
<version>5.0.0</version>
</dependency>
此处version选择5.0.0的原因是因为Spark版本的问题,elasticsearch-hadoop 5.0.0 依赖的spark版本是2.0.0。这一点可以从IDEA集成开发环境的pom文件中使用 Ctrl 键并点击 elasticsearch-hadoop 可以进入它依赖的所有包,其中能找到Spark的版本。2.1.2 依赖的是Spark 1.5.1,他与Spark 2.x.x不兼容。所以此时如果使用2.1.2的话就会导致最终提交spark任务时出现 method not found 等bug。提交Spark任务时凡是出现 method not found 或者 class not found 或者 class not definition等,基本上都可以考虑是依赖库的版本不兼容出现的问题。
完整的Spark Streaming 程序如下
/** * InterfaceCallingAnalysis.scala */
import java.io.PrintWriter
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.elasticsearch.spark._
import scala.collection.JavaConversions._
object InterfaceCallingAnalysis {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("InterfaceCallingAnalysis")
conf.set("es.index.auto.create", "true")
conf.set("es.nodes", "192.168.1.2")
conf.set("es.port", "9200")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(60))
val lines = ssc.socketTextStream("192.168.1.1", 9999)
val pairs = lines.map(MyFunctions.func1)
val result = pairs.reduceByKey((a, b) => a + b)
result.foreachRDD(rdd => {
rdd.map(line => {
val time = (System.currentTimeMillis() / 60000) * 60
Map("hostIp" -> line._1.hostIp,
"remoteIp" -> line._1.remoteIp,
"callTimes" -> line._2.toLong,
"time" -> time)
}).saveToEs("jsf_node_speed/infoType")
})
ssc.start()
ssc.awaitTermination()
}
}
上述的 es.port 设置为 9200,这里稍作解释(大牛请绕道),ElasticSearch 客户端程序除了Java 使用TCP的方式连接ES集群以外,其他的语言基本上都是使用的Http的方式。众所周知,ES 客户端默认的TCP端口为9300,而HTTP默认端口为9200。elasticsearch-hadoop 使用的就是HTTP的方式连接的ES集群。
/** * MyFunctions.scala */
object MyFunctions {
def func1(str: String): (MyValue, Long) = {
var ans = new MyValue()
val jsonParser = new JSONParser()
val jsonObj: JSONObject = jsonParser.parse(str).asInstanceOf[JSONObject]
val hostIp = jsonObj.getAsString("host")
val remoteIp = jsonObj.getAsString("remote")
val callTimes = jsonObj.getAsString("callTimes").toLong
ans.hostIp = hostIp
ans.remoteIp = remoteIp
// 返回类型(MyValue, Int)
(ans, callTimes)
}
}
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.jd.security</groupId>
<artifactId>SparkTest</artifactId>
<version>1.0.0</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.8</scala.version>
<java.version>1.8</java.version>
<spark.version>2.1.0</spark.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<!-- Spark dependencies -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/net.minidev/json-smart -->
<dependency>
<groupId>net.minidev</groupId>
<artifactId>json-smart</artifactId>
<version>2.3</version>
</dependency>
<!-- Scala dependencies -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-compiler</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-reflect</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scalap</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.elasticsearch/elasticsearch-hadoop -->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-hadoop</artifactId>
<version>5.0.0</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<resources>
<resource>
<directory>src/main/resource</directory >
</resource>
</resources>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.8</arg>
</args>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>com.jd.security.InterfaceCallingAnalysis</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>assembly</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>