uclinux内核线程的创建

快乐虾

http://blog.csdn.net/lights_joy/

[email protected]

本文适用于

ADSP-BF561

uclinux-2008r1.5-RC3(移植到vdsp5)

Visual DSP++ 5.0(update 5)

欢迎转载,但请保留作者信息

创建内核线程可以使用kernel_thread函数:

/*

* Create a kernel thread.

*/

pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)

{

struct pt_regs regs;

memset(&regs, 0, sizeof(regs));

regs.r1 = (unsigned long)arg;

regs.p1 = (unsigned long)fn;

regs.pc = (unsigned long)kernel_thread_helper;

regs.orig_p0 = -1;

/* Set bit 2 to tell ret_from_fork we should be returning to kernel

mode. */

regs.ipend = 0x8002;

__asm__ __volatile__("%0 = syscfg;":"=d"(regs.syscfg):);

return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,

NULL);

}

注意这里的pc值的设置,它指向了kernel_thread_help,这将是这个内核线程要执行的第一行语句:

/*

* This gets run with P1 containing the

* function to call, and R1 containing

* the "args". Note P0 is clobbered on the way here.

*/

void kernel_thread_helper(void);

__asm__(".section .text\n"

".align 4\n"

"_kernel_thread_helper:\n\t"

"\tsp += -12;\n\t"

"\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous;");

在这段代码中,将跳转到用户指定的函数,然后调用do_exit进行一些清理工作。

具体的创建工作由do_fork完成,此时传递进去的stack_startstack_size的值都为0

1.1.1 do_fork

这个函数完成线程的创建,它的关键代码如下:

/*

* Ok, this is the main fork-routine.

*

* It copies the process, and if successful kick-starts

* it and waits for it to finish using the VM if required.

*/

long do_fork(unsigned long clone_flags,

unsigned long stack_start,

struct pt_regs *regs,

unsigned long stack_size,

int __user *parent_tidptr,

int __user *child_tidptr)

{

struct task_struct *p;

int trace = 0;

struct pid *pid = alloc_pid();

long nr;

……………………

p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);

/*

* Do this prior waking up the new thread - the thread pointer

* might get invalid after that point, if the thread exits quickly.

*/

if (!IS_ERR(p)) {

struct completion vfork;

…………………….

if (!(clone_flags & CLONE_STOPPED))

wake_up_new_task(p, clone_flags);

else

p->state = TASK_STOPPED;

……………………….

} else {

free_pid(pid);

nr = PTR_ERR(p);

}

return nr;

}

它首先为此线程分配一个pid号,然后复制出一个新的task_struct,最后唤醒此线程,当然此时还不会进入执行状态。

1.1.2 copy_process

这个函数用于从当前线程复制一个task_struct出来。

/*

* This creates a new process as a copy of the old one,

* but does not actually start it yet.

*

* It copies the registers, and all the appropriate

* parts of the process environment (as per the clone

* flags). The actual kick-off is left to the caller.

*/

static struct task_struct *copy_process(unsigned long clone_flags,

unsigned long stack_start,

struct pt_regs *regs,

unsigned long stack_size,

int __user *parent_tidptr,

int __user *child_tidptr,

struct pid *pid)

{

int retval;

struct task_struct *p = NULL;

……………………….

retval = -ENOMEM;

p = dup_task_struct(current);

if (!p)

goto fork_out;

………………………..

retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);

if (retval)

goto bad_fork_cleanup_namespaces;

…………………………

return p;

}

它首先调用dup_task_struct得到一个task_struct,同时也给这个新的线程分配了一个thread_info的结构体,这也是这个新线程的栈,使用BUDDY算法分配,保证以8K对齐。

接着调用copy_thread进行线程的复制。

int

copy_thread(int nr, unsigned long clone_flags,

unsigned long usp, unsigned long topstk,

struct task_struct *p, struct pt_regs *regs)

{

struct pt_regs *childregs;

childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;

*childregs = *regs;

childregs->r0 = 0;

p->thread.usp = usp;

p->thread.ksp = (unsigned long)childregs;

p->thread.pc = (unsigned long)ret_from_fork;

return 0;

}

注意这里在新线程的栈的底端复制了一份pt_regs,而这份pt_regsPC指针是指向kernel_thread_helper的。且新线程的PC指针是指向ret_from_fork函数。

1.1.3 wake_up_new_task

这个函数用于把线程放到一个CPU核的任务队列中。

/*

* wake_up_new_task - wake up a newly created task for the first time.

*

* This function will do some initial scheduler statistics housekeeping

* that must be done for every newly created context, then puts the task

* on the runqueue and wakes it.

*/

void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)

{

struct rq *rq, *this_rq;

unsigned long flags;

int this_cpu, cpu;

rq = task_rq_lock(p, &flags);

BUG_ON(p->state != TASK_RUNNING);

this_cpu = smp_processor_id();

cpu = task_cpu(p);

/*

* We decrease the sleep average of forking parents

* and children as well, to keep max-interactive tasks

* from forking tasks that are max-interactive. The parent

* (current) is done further down, under its lock.

*/

p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *

CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

p->prio = effective_prio(p);

if (likely(cpu == this_cpu)) {

if (!(clone_flags & CLONE_VM)) {

/*

* The VM isn't cloned, so we're in a good position to

* do child-runs-first in anticipation of an exec. This

* usually avoids a lot of COW overhead.

*/

if (unlikely(!current->array))

__activate_task(p, rq);

else {

p->prio = current->prio;

p->normal_prio = current->normal_prio;

list_add_tail(&p->run_list, &current->run_list);

p->array = current->array;

p->array->nr_active++;

inc_nr_running(p, rq);

}

set_need_resched();

} else

/* Run child last */

__activate_task(p, rq);

/*

* We skip the following code due to cpu == this_cpu

*

* task_rq_unlock(rq, &flags);

* this_rq = task_rq_lock(current, &flags);

*/

this_rq = rq;

} else {

this_rq = (struct rq *)cpu_rq(this_cpu);

/*

* Not the local CPU - must adjust timestamp. This should

* get optimised away in the !CONFIG_SMP case.

*/

p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)

+ rq->most_recent_timestamp;

__activate_task(p, rq);

if (TASK_PREEMPTS_CURR(p, rq))

resched_task(rq->curr);

/*

* Parent and child are on different CPUs, now get the

* parent runqueue to update the parent's ->sleep_avg:

*/

task_rq_unlock(rq, &flags);

this_rq = task_rq_lock(current, &flags);

}

current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *

PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

task_rq_unlock(this_rq, &flags);

}

这个函数挺长的,但实际上将新线程加入队列的工作是由__activate_task这个函数完成的:

/*

* __activate_task - move a task to the runqueue.

*/

static void __activate_task(struct task_struct *p, struct rq *rq)

{

struct prio_array *target = rq->active;

if (batch_task(p))

target = rq->expired;

enqueue_task(p, target);

inc_nr_running(p, rq);

}

再看enqueue_task

static void enqueue_task(struct task_struct *p, struct prio_array *array)

{

sched_info_queued(p);

list_add_tail(&p->run_list, array->queue + p->prio);

__set_bit(p->prio, array->bitmap);

array->nr_active++;

p->array = array;

}

你可能感兴趣的:(thread,算法,工作,Blog,UP)