E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
【吴恩达机器学习】
七.正则化
吴恩达机器学习
之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net
愿风去了
·
2024-09-15 21:11
吴恩达机器学习
全课程笔记第一篇
P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【
吴恩达机器学习
亿维数组
·
2024-02-20 21:37
Machine
Learning
机器学习
笔记
人工智能
吴恩达机器学习
全课程笔记第二篇
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是
吴恩达机器学习
笔记的第二篇
亿维数组
·
2024-02-20 21:03
Machine
Learning
机器学习
笔记
人工智能
学习
吴恩达机器学习
—大规模机器学习
学习大数据集数据量多,模型效果肯定会比较好,但是大数据也有它自己的问题,计算复杂如果存在100000000个特征,计算量是相当大的,在进行梯度下降的时候,还要反复求损失函数的偏导数,这样一来计算量更大。那么有没有简单的方法来应对大量的数据呢?我们可以采取随机抽样,比如,抽取1000个样本进行模型的构建。那么如何决定抽取多少样本呢?可以通过学习曲线获得,随着数据量的增加,无论是偏差和误差,都会趋向于
魏清宇
·
2024-02-14 21:14
吴恩达机器学习
—正则化
过拟合问题欠拟合与过拟合当变量过少时,可能存在欠拟合;当变量过多时,会存在过拟合。过拟合可能对现有数据拟合效果较好,损失函数值几乎为零,但是不能进行泛化时,即不适于非训练集的其他数据。如何解决过拟合问题特征变量过多造成过拟合绘制假设模型图像,但当特征变量变多时,绘制很困难。当变量过多而训练数据较少时,容易出现过拟合。过拟合的解决办法解决过拟合问题,通常有两种方法:一种是减少特征的数量,可以通过人工
魏清宇
·
2024-02-11 09:55
吴恩达机器学习
—推荐系统
问题规划引例—电影推荐假设已有的数据如上所示,洋红色线内的数据表示缺失数据,那么我们如何根据已有的评分数据来预测这些缺失的数据呢?基于特征的推荐算法基于内容的推荐系统已知数据如上,有四个人对于不同电影的评分,我们还有分别表示电影包含浪漫成分和动作片成分的多少。那么每一个电影都可以用一个向量来表示,如第一个电影可以表示为,其中第一个元素为常数。那么对于每一个用户j,我们可以用一个学习算法学习参数,然
魏清宇
·
2024-02-11 02:53
【
吴恩达机器学习
】第八周—聚类降维Kmeans算法
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
Sunflow007
·
2024-02-09 20:26
吴恩达机器学习
笔记(2)
一.逻辑回归1.什么是逻辑回归?逻辑回归是一种预测变量为离散值0或1情况下的分类问题,在逻辑回归中,假设函数。2.模型描述在假设函数中,,为实数,为Sigmoid函数,也叫Logistic函数。模型解释:,即就是对一个输入,的概率估计。损失函数的理解:所谓最大似然估计,就是我们想知道哪套参数组合对应的曲线最可能拟合我们观测到的数据,也就是该套参数拟合出观测数据的概率最大,而损失函数的要求是预测结果
python小白22
·
2024-02-09 18:11
【Andrew Ng机器学习】单变量线性回归-模型描述
课程:
吴恩达机器学习
一个监督学习的例子——房价预测使用的是一组俄勒冈州波特兰市的城市住房价格的数据。根据不同的尺寸的房间对应的不同售价,组成的数据集来画图。
jenye_
·
2024-02-07 05:21
ML:2-2-3 多分类问题multicalss
文章目录1.多分类问题的定义2.softmax3.神经网络的softmax输出【
吴恩达机器学习
65-67】1.多分类问题的定义classification问题可能的output大于2种。
skylar0
·
2024-02-05 18:34
分类
机器学习
人工智能
Coursera
吴恩达机器学习
课程笔记——神经网络: 学习(Neural Networks: Learning)
9神经网络:学习(NeuralNetworks:Learning)9.1代价函数(CostFunction)神经网络的分类问题有两种:二元分类问题(0/1分类)只有一个输出单元(K=1K=1K=1)多元(KKK)分类问题输出单元不止一个(K>1K\gt1K>1)神经网络的代价函数公式:hΘ(x)=a(L)=g(Θ(L−1)a(L−1))=g(z(L))h_\Theta(x)=a^{(L)}=g(\
yanglamei1962
·
2024-02-03 06:04
机器学习
笔记
神经网络
吴恩达机器学习
笔记十二 Sigmoid激活函数的替代方案 激活函数的选择 为什么要使用激活函数
在需求预测案例中,awareness这个输入可能不是二元(binary)的,或许是一点(alittlebit)、有些(somewhat)或完全(extremely),此时相比将awareness规定为0、1,不如考虑概率,认为它是一个0-1之间的数。激活函数可以采用ReLU函数(rectifiedlinearunit)三个常用的激活函数使用线性激活函数也可以看作是没有激活函数。激活函数的选择输出层
爱学习的小仙女!
·
2024-02-02 08:52
机器学习
机器学习
人工智能
吴恩达机器学习
笔记十 神经网络 TensorFlow 人工智能
神经网络:说几层的时候是指隐藏层及输出层,不包含输入层。例如下图是一个四层神经网络。前向传播(forwardpropagation)越靠近输出层,该层的神经元数量越少TensorFlow(张量流)实现神经网络的搭建sequential()把两层顺序连接起来;如果有新的x,用predict()人工智能
爱学习的小仙女!
·
2024-02-02 08:22
机器学习
神经网络
人工智能
深度学习
吴恩达机器学习
- 正则化
过拟合和欠拟合定义和形态解决方法减少特征值数量正则化正则化惩罚θ系数线性回归正则化逻辑回归正则化
YANWeichuan
·
2024-02-01 03:40
最强机器学习入门博客(
吴恩达机器学习
课程总结)
机器学习的概述诞生现实生活许多领域的问题不能通过显式编程实现,比如制造自动驾驶汽车、智能工厂、规模农业、计算机视觉等等,一种好的实现方式是通过学习算法让计算机自己学习如何做。现在现在是学习机器学习最好的时机,因为机器学习在未来能产生巨大的价值未来机器学习在软件领域方面取得了巨大的价值,比如智能推荐,网络搜索,图像识别等机器学习在许多其他的领域仍有巨大的价值,比如未来在自动驾驶汽车,工厂,农业,医疗
PengHao666999
·
2024-01-30 23:32
机器学习
人工智能
在学习
吴恩达机器学习
课程中遇到的一些问题
C1_W1_Lab04_Cost_function_Soln中遇到的一些问题1、importnumpyasnp%matplotlibnotebookimportmatplotlib.pyplotaspltfromlab_utils_uniimportplt_intuition,plt_stationary,plt_update_onclick,soup_bowlplt.style.use('./d
ttyykx
·
2024-01-25 04:51
学习
机器学习
jupyter
吴恩达机器学习
Coursera-week11
PhotoOCR在此章的课程中,Andrew主要是想通过OCR问题的解决来阐释在实际项目中我们应该如何定义问题,并将一个大问题分解为多个小问题,并通过pipeline的方式将对这些小问题的解决方案串联起来,从而解决这个大问题。我认为这是解决实际问题的一个经典的方法论,有助于我们在实际工作和生活中更好地思考问题,分解问题,并最终解决问题。ProblemDescriptionandPipeline此小
geekpy
·
2024-01-24 20:23
吴恩达机器学习
介绍第一章介绍
1.机器学习的概念在进行特定编程的情况下,给予计算机学习的能力。机器学习是一种人工智能的分支,它关注如何通过计算机算法和模型来使计算机系统从数据中学习和改进。机器学习的目标是让计算机系统能够自动分析和理解数据,并根据数据的模式和规律做出预测和决策,而无需明确的编程指令。机器学习可以分为监督学习、无监督学习和强化学习三种类型。在监督学习中,计算机系统通过使用带有标签的训练数据来学习模式和规律,然后根
清☆茶
·
2024-01-24 08:30
机器学习
人工智能
【Andrew Ng机器学习】单变量线性回归-梯度下降
课程:
吴恩达机器学习
此篇我们将学习梯度下降算法,我们之前已经定义了代价函数J,梯度下降法可以将代价函数J最小化。梯度下降是很常用的算法,他不仅被用在线性回归上,还被广泛应用与机器学习的众多领域。
jenye_
·
2024-01-21 22:01
第八章 正则化
该系列文章为,观看“
吴恩达机器学习
”系列视频的学习笔记。虽然每个视频都很简单,但不得不说每一句都非常的简洁扼要,浅显易懂。非常适合我这样的小白入门。
tomas家的小拨浪鼓
·
2024-01-21 10:15
2022-12-14科研日志
今天主要学习了
吴恩达机器学习
的网课,又复习了一下机器学习;然后看了看VIO相关资料论文,今天看了几篇知网上搜到的关于VIO的硕士博士毕业论文和一篇20年的VIO综述,这方面的论文对于一个领域一般都有比较全面的描述
独孤西
·
2024-01-20 21:17
吴恩达机器学习
笔记-Logistic回归模型
回归函数在逻辑回归模型中我们不能再像之前的线性回归一样使用相同的代价函数,否则会使得输出的结果图像呈现波浪状,也就是说不再是个凸函数。代价函数的表达式之前有表示过,这里我们把1/2放到求和里面来。这里的求和部分我们可以表示为:很显然,如果我们把在之前说过的分类问题的假设函数带进去,即,得到的结果可能就是上述所说的不断起伏的状况。如果这里使用梯度下降法,不能保证能得到全局收敛的值,这个函数就是所谓的
Carey_Wu
·
2024-01-18 16:26
吴恩达机器学习
笔记(1)
一.初识机器学习1.监督学习在监督学习中,训练数据既有特征又有标签,通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。监督学习可以分为回归问题和分类问题。回归问题是利用训练出的模型,预测连续的数值输出;分类问题是预测离散值的输出。2.无监督学习无监督学习是给算法大量的数据,要求它找出数据的类型结构。无监督学习的数据没有标签,或是所有数据都是同一种标签
python小白22
·
2024-01-17 14:59
ML:2-2neural network layer
文章目录1.神经网络层2.更复杂的神经网络3.神经网络的前向传播【
吴恩达机器学习
笔记p47-49】1.神经网络层【了解神经网络如何完成预测的】input:4个数字的向量。
skylar0
·
2024-01-10 18:53
机器学习
ML:5-1 neural networks
文章目录course2框架1.neuralnetworks(deeplearning)2.DemandPrediction【
吴恩达机器学习
p43-46】course2框架一、neuralnetworks-inference
skylar0
·
2024-01-10 18:22
机器学习
吴恩达机器学习
笔记(1)——单变量线性回归
上一个笔记,我们大概了解了什么是机器学习以及机器学习的两个重要的分类,本篇笔记将带领大家了解机器学习的第一个模型——线性回归例题为了让大家更加直观的理解这个模型,我们引入一个例题,我们有一组波特兰市的城市住房的价格数据,我们要通过这些数据来找出一个函数,来预测任意面积下的房价,这就是一个简单的线性回归问题。这里给出的数据是一组房子面积对应的房价数据集其中m代表训练集,x是输入,y是输出。我们用(x
机智的神棍酱
·
2024-01-05 06:35
【
吴恩达机器学习
】第一周课程笔记
下面是我近期学习机器学习的笔记,出发点是希望对自己起到一个督促和输出的作用如果你对我的笔记感兴趣欢迎Like,有不足之处也欢迎评论留言B站【2022
吴恩达机器学习
Deeplearning.ai课程】笔记参考
Estella_07
·
2024-01-04 08:24
机器学习
笔记
人工智能
吴恩达机器学习
笔记
吴恩达机器学习
笔记第一周基本概念监督学习分为回归算法和分类算法无监督学习事先没有正确答案。
AADGSEGA
·
2024-01-04 08:23
机器学习
ML学习安排和资源链接
第一阶段:学习前置数学知识机器学习的数学基础_二进制人工智能的博客-CSDN博客第二阶段:认知机器学习
吴恩达机器学习
【2022中文版教程全集】_哔哩哔哩_bilibili视频5h,看了一点发现后面没字幕了
Nice night
·
2023-12-23 13:55
#
ML吴恩达
机器学习
深度学习学习顺序梳理
spm_id_from=333.999.0.0&vd_source=9607a6d9d829b667f8f0ccaaaa142fcb1.
吴恩达机器学习
课程已学完,时间较久了,后续可以重新听一遍,整理一下笔记
陌上阳光
·
2023-12-14 23:37
深度学习
深度学习
人工智能
Course1-Week3-分类问题
实现梯度下降4.过拟合与正则化4.1线性回归和逻辑回归中的过拟合4.2解决过拟合的三种方法4.3正则化4.4用于线性回归的正则方法4.5用于逻辑回归的正则方法笔记主要参考B站视频“(强推|双字)2022
吴恩达机器学习
虎慕
·
2023-12-01 15:33
#
机器学习-吴恩达
分类
数据挖掘
人工智能
【
吴恩达机器学习
】第十周—大规模机器学习和随机梯度下降
31.jpg1.大规模机器学习1.1大型数据集现实世界中,往往数据集的规模很大,譬如人口普查数据、谷歌、阿里、亚马逊,....等这些互联网公司产生的海量数量。不论采用怎样的算法或优化,可能最后决定模型准确度的主要因素就是数据集的规模,于是,研究和优化大规模数据集的训练变成了很重要的内容。1.png针对大数据集,如果我们一上来就用传统的梯度下降算法,可能往往会训练很慢很慢,达不到预期要求。那么我们该
Sunflow007
·
2023-11-30 02:10
吴恩达机器学习
课后作业Python实现 03 Multi-class Classification & Neural Network
文章目录题目描述数据集介绍逻辑回归(多元分类)神经网络题目描述在本练习中,将使用逻辑回归和神经网络来识别手写数字(从0到9)。练习的第一部分,将扩展之前的逻辑回归实现,将其应用于一对多的分类;第二部分将使用神经网络进行数字识别。数据集介绍该数据集共有5000个训练样本,每个样本是20*20像素的灰度图像,每个像素为一个浮点数,表示该位置的灰度强度。20×20的像素网格被展开成一个400维的向量。在
shy~
·
2023-11-30 01:27
机器学习
python
机器学习
吴恩达机器学习
课后作业Python实现 01 Linear Regression
文章目录题目说明单变量线性回归梯度下降正则方程调用sklearn库多变量线性回归题目说明在本部分的练习中,您将使用一个变量实现线性回归,以预测食品卡车的利润。假设你是一家餐馆的首席执行官,正考虑在不同的城市开设一个新的分店。该连锁店已经在各个城市拥有食品卡车,而且你有来自城市的利润和人口数据。您希望通过使用这些数据来帮助您扩展到下一个城市。单变量线性回归导入库importnumpyasnpimpo
shy~
·
2023-11-30 01:57
机器学习
python
机器学习
吴恩达机器学习
课后作业Python实现 02 Logistic Regression
文章目录逻辑回归正则化逻辑回归逻辑回归题目描述设想你是某大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。可以准备构建一个基于两次测试评分来评估录取可能性的分类模型来完成这个预测任务。导入库importnumpyasnpimportpandasaspdi
shy~
·
2023-11-30 01:57
机器学习
python
机器学习
Coursera-
吴恩达机器学习
课程个人笔记-Week2
Week2线性回归和梯度下降法参数说明1.多特征的线性回归方程2.梯度下降法(GradientDescent)2.1如何选择参数向量θ呢?2.2优化梯度下降法的方法 1).特征缩放(特征标准化) 2).学习率α的选择2.3批量梯度下降算法和随机梯度下降算法3.线性回归的“非线性拟合”4.目标函数J(θ)的最小值的线性代数求法(了解)4.1目标函数J(θ)的最小值求解过程:4.2梯度下降法和线代
lavendelion
·
2023-11-28 15:22
机器学习笔记
吴恩达
机器学习
笔记
吴恩达机器学习
作业4(python)
git参考(课程+代码+作业)代码不包括画图部分正向传播importnumpyasnpimportmatplotlib.pylabaspltimportscipy.ioassioimportmathimportscipy.optimizeasop#神经网络#分类(识别)手写数字图片np.set_printoptions(threshold=np.inf)#print()可以显示所有数据data=s
之江小林
·
2023-11-25 16:27
机器学习
python
机器学习
numpy
吴恩达机器学习
作业2(python)
git参考(课程+代码+作业)代码不包括画图部分逻辑回归op.minimize高级算法计算代价最小值importnumpyasnpimportscipy.optimizeasop#逻辑回归,分类问题#梯度下降,高级算法求最小代价defsigmoid(z):return1/(1+np.exp(-z))defcostFunction(theta,x,y):m=np.size(y)h=sigmoid(x
之江小林
·
2023-11-25 16:57
机器学习
python
吴恩达机器学习
作业3(python)
git参考(课程+代码+作业)代码不包括画图部分逻辑回归importnumpyasnpimportmatplotlib.pylabaspltimportscipy.ioassioimportmathimportscipy.optimizeasop#逻辑回归#分类(识别)手写数字图片defsigmoid(z):return1/(1+np.exp(-z))defcostFunction(theta,x
之江小林
·
2023-11-25 16:57
机器学习
python
Course1-Week2-多输入变量的回归问题
用于多元线性回归的梯度下降法2.使梯度下降法更快收敛的技巧2.1特征缩放2.2判断梯度下降是否收敛2.3如何设置学习率3.特征工程3.1选择合适的特征3.2多项式回归笔记主要参考B站视频“(强推|双字)2022
吴恩达机器学习
虎慕
·
2023-11-23 19:39
#
机器学习-吴恩达
回归
数据挖掘
人工智能
2022
吴恩达机器学习
第3课week3
2022
吴恩达机器学习
课程学习笔记(第三课第三周)1-1什么是强化学习1-2示例:火星探测器1-3强化学习的回报1-4决策:强化学习中的策略1-5审查关键概念2-1状态-动作价值函数定义2-2状态-动作价值函数示例
天微亮。
·
2023-11-23 19:38
吴恩达机器学习
机器学习
人工智能
算法
吴恩达机器学习
笔记
一、机器学习1.1机器学习定义1.2监督学习supervisedlearning1.2.1监督学习定义给算法一个数据集,其中包含了正确答案,算法的目的是给出更多的正确答案如预测房价(回归问题)、肿瘤良性恶性分类(分类问题)假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千
六本木砍王刀哥
·
2023-11-20 18:30
机器学习
笔记
人工智能
【学习笔记】
吴恩达机器学习
| 第五章 | 逻辑回归
简要声明课程学习相关网址Bilibili网易云课堂学习讲义由于课程学习内容为英文,文本会采用英文进行内容记录,采用中文进行简要解释。本学习笔记单纯是为了能对学到的内容有更深入的理解,如果有错误的地方,恳请包容和指正。非常感谢AndrewNg吴恩达教授的无私奉献!!!文章目录简要声明专有名词ClassificationClassificationHypothesisRepresentationLog
Benjamin Chen.
·
2023-11-20 18:22
学习笔记
【学习笔记】吴恩达机器学习
机器学习
学习
人工智能
逻辑回归
Regularized Logistic Regression(
吴恩达机器学习
:正则化逻辑回归)
微晶体质检处理Trainingset数据可视化Feature_mappingsigmod函数损失函数求解梯度下降算法可视化预测RegularizedLogisticRegression题目:微晶体质检(
吴恩达机器学习
课后题链接放在最后
Algorithm-
·
2023-11-19 16:55
算法
机器学习
人工智能
逻辑回归
吴恩达机器学习
12-支持向量机
吴恩达机器学习
12-支持向量机1优化目标支持向量机(SVM),在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。
小y同学在学习
·
2023-11-15 21:59
吴恩达机器学习系列笔记
机器学习
支持向量机
人工智能
吴恩达机器学习
----支持向量机
吴恩达机器学习
教程学习笔记(10/16)吴恩达教授(AndrewNg)的机器学习可以说是一门非常重视ML理论基础的课程,做做一些简单的笔记加上个人的理解。
huapusi
·
2023-11-15 21:29
吴恩达机器学习笔记
吴恩达
支持向量机
核函数
机器学习
吴恩达机器学习
4-多变量线性回归
吴恩达机器学习
4-多变量线性回归1.定义实际问题中,对于问题的解决单一变量往往是不够的,往往要对多个变量进行分析:支持多变量的假设ℎ表示为:hθ(x)=θ0+θ1x1+θ2x2+…+θnxn\h_{\theta
小y同学在学习
·
2023-11-15 21:29
吴恩达机器学习系列笔记
机器学习
线性回归
算法
吴恩达机器学习
11-机器学习系统的设计
机器学习系统的设计1.确定执行的优先级以一个垃圾邮件分类器算法为例:为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量。我们可以选择一个由100个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为1,不出现为0),尺寸为100×1。为了构建这个分类器算法,我们可以做很多事,例如:收集更多的数据,让我们有更多的垃圾邮件和非垃圾邮件的样本基于
小y同学在学习
·
2023-11-15 21:59
吴恩达机器学习系列笔记
机器学习
人工智能
算法
吴恩达机器学习
笔记26-样本和直观理解1(Examples and Intuitions I)
从本质上讲,神经网络能够通过学习得出其自身的一系列特征。在普通的逻辑回归中,我们被限制为使用数据中的原始特征?1,?2,...,??,我们虽然可以使用一些二项式项来组合这些特征,但是我们仍然受到这些原始特征的限制。在神经网络中,原始特征只是输入层,在我们上面三层的神经网络例子中,第三层也就是输出层做出的预测利用的是第二层的特征,而非输入层中的原始特征,我们可以认为第二层中的特征是神经网络通过学习后
weixin_34221773
·
2023-11-15 21:58
人工智能
数据结构与算法
吴恩达机器学习
-Kmeans
1.理论基础1.算法K-means是我们最常用的基于欧氏距离的聚类算法,其认为两个目标的距离越近,相似度就越大。1.1牧师-村民模型K-means有一个著名的解释:牧师—村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课。 听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的
NLP菜鸟
·
2023-11-15 21:57
机器学习
机器学习
kmeans
聚类
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他