E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
损失函数
机器学习——逻辑回归
目录一、逻辑回归1.1、模型原理1.2、
损失函数
二、实例2.1、定义sigmoid函数2.2、数据集2.3、梯度上升算法2.4、预测函数2.5、绘画函数三、代码运行结果:四、总结优点:缺点:一、逻辑回归逻辑回归是一种广义的线性回归分析模型
wsdswzj
·
2024-08-25 17:06
机器学习
逻辑回归
人工智能
机器学习最优化方法之梯度下降
另外,在绝大多数机器学习算法情况下(如LR),
损失函数
要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。
whemy
·
2024-08-25 17:45
BCEWithLogitsLoss
BCEWithLogitsLoss是PyTorch深度学习框架中的一个
损失函数
,用于二元分类问题。
hero_hilog
·
2024-08-25 13:39
算法
pytorch
遗传算法与深度学习实战(1)——进化深度学习
深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和
损失函数
优化
盼小辉丶
·
2024-08-25 00:21
遗传算法与深度学习实战
深度学习
人工智能
遗传算法
数学基础 -- 梯度下降算法
它广泛应用于机器学习、深度学习以及统计学中,用于最小化
损失函数
或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。
sz66cm
·
2024-08-24 15:25
算法
人工智能
数学基础
深度学习学习经验——深度学习名词字典
深度学习名词字典1.张量(Tensor)2.神经网络(NeuralNetwork)3.
损失函数
(LossFunction)4.优化器(Optimizer)5.激活函数(ActivationFunction
Linductor
·
2024-08-23 20:51
深度学习学习经验
深度学习
学习
人工智能
python实现梯度下降优化算法
在机器学习中,它常被用来更新模型的参数以最小化某个
损失函数
。以下是一个简单的Python示例,展示如何实现梯度下降算法来优化一个二次函数的参数。
孺子牛 for world
·
2024-08-23 15:49
python
算法
机器学习
《论文阅读》EmpDG:多分辨率交互式移情对话生成 COLING 2020
《论文阅读》EmpDG:多分辨率交互式移情对话生成COLING2020前言简介模型架构共情生成器交互鉴别器
损失函数
前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘
365JHWZGo
·
2024-03-26 00:13
情感对话
论文阅读
共情回复
回复生成
对话系统
多分辨率
对抗学习
神经网络(深度学习,计算机视觉,得分函数,
损失函数
,前向传播,反向传播,激活函数)
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
MarkHD
·
2024-03-25 16:35
深度学习
神经网络
计算机视觉
训练时损失出现负数,正常吗?为什么
在训练神经网络时,通常期望
损失函数
的值是非负的,因为
损失函数
是用来度量模型预测与真实值之间的差异的。
苏苏大大
·
2024-03-22 02:17
机器学习
深度学习
人工智能
神奇的微积分
微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用:优化算法:•梯度下降法:微积分中的导数被用来计算
损失函数
相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。
科学的N次方
·
2024-03-19 05:14
人工智能
人工智能
ai
Pytorch nn.Module
它提供了一系列的类和函数,用于定义神经网络的各种层、
损失函数
、优化器等。torch.nn提供的类:Module:所有神经网络模型的基类,用于定义自定义神经网络模型。Linear:线性层,进行线性变换。
霖大侠
·
2024-03-16 15:53
pytorch
人工智能
python
深度学习
cnn
神经网络
卷积神经网络
深度学习——梯度消失、梯度爆炸
本文参考:深度学习之3——梯度爆炸与梯度消失梯度消失和梯度爆炸的根源:深度神经网络结构、反向传播算法目前优化神经网络的方法都是基于反向传播的思想,即根据
损失函数
计算的误差通过反向传播的方式,指导深度网络权值的更新
小羊头发长
·
2024-03-14 12:07
深度学习
机器学习
人工智能
计算机设计大赛 深度学习的智能中文对话问答机器人
文章目录0简介1项目架构2项目的主要过程2.1数据清洗、预处理2.2分桶2.3训练3项目的整体结构4重要的API4.1LSTMcells部分:4.2
损失函数
:4.3搭建seq2seq框架:4.4测试部分
iuerfee
·
2024-03-07 20:46
python
170基于matlab的DNCNN图像降噪
网络学习的是图像残差,也就是带噪图像和无噪图像差值,
损失函数
采用的MSE。程序已调通,可直接运行。170matlabDNCNN图像降噪处理(xiaohongshu.com)
顶呱呱程序
·
2024-02-25 23:06
matlab工程应用
matlab
开发语言
图像降噪处理
DNCNN
变分自编码器(VAE)PyTorch Lightning 实现
本文目录VAE简介基本原理应用与优点缺点与挑战使用VAE生成MNIST手写数字忽略警告导入必要的库设置随机种子cuDNN设置超参数设置数据加载定义VAE模型定义
损失函数
定义Lightning模型训练模型绘制训
小嗷犬
·
2024-02-20 21:06
Python
深度学习
pytorch
人工智能
python
【机器学习案例5】语言建模 - 最常见的预训练任务一览表
SSL中的
损失函数
这里的
损失函数
只是模型训练的各个预训练任务损失的加权和。
suoge223
·
2024-02-20 20:05
机器学习实用指南
机器学习
人工智能
无法收敛问题
1、权重的初始化方案有问题2、正则化过度3、选择不合适的激活函数、
损失函数
4、选择了不合适的优化器和学习速率5、训练epoch不足
yizone
·
2024-02-20 19:55
通俗的讲解什么是机器学习之
损失函数
在这个游戏中,
损失函数
可以看作是测量你的箭簇与靶心距离的规则。
损失函数
的值越小,意味着你的箭簇离靶心越近,你的射击技能越好。
华农DrLai
·
2024-02-20 19:18
机器学习
人工智能
【面经——《广州敏视数码科技有限公司》——图像处理算法工程师-深度学习方向】
损失函数
有哪些?优缺点
有情怀的机械男
·
2024-02-20 15:30
面试offer
面经
神经网络权重初始化
权重是可训练的参数,意味着它们会在训练过程中根据反向传播算法自动调整,以最小化网络的
损失函数
。每个神经元接收到的输入信号会与相应的权重相乘,然后所有这些乘积会被累加在一起,最后可能还会加
诸神缄默不语
·
2024-02-20 06:49
人工智能学习笔记
神经网络
人工智能
深度学习
权重初始化
参数初始化
Xavier初始化
Glorot初始化
深度学习之反向传播算法(backward())
该方法对网络中所有权重计算
损失函数
的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化
损失函数
。
Tomorrowave
·
2024-02-20 01:27
人工智能
深度学习
算法
人工智能
机器学习中为什么需要梯度下降
在机器学习中,梯度下降是一种常用的优化算法,用于寻找
损失函数
的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。假设你被困在山上,需要找到一条通往山下的路。
华农DrLai
·
2024-02-19 23:16
机器学习
人工智能
大数据
深度学习
算法
数据挖掘
计算机视觉
精通PyTorch:如何选择合适的优化器和
损失函数
精通PyTorch:如何选择合适的优化器和
损失函数
引言PyTorch优化器概览PyTorch
损失函数
解析高级优化技巧优化器和
损失函数
的实战应用1.卷积神经网络(CNN)的应用实例2.循环神经网络(RNN
walkskyer
·
2024-02-19 16:38
AI探索
pytorch
人工智能
python
OLMo论文里的模型结构的小白解析
attentionheads为32训练的token量为2.46T训练策略超参数在我们的硬件上优化训练吞吐量,同时最小化损失峰值和缓慢发散的风险来选择超参数损失峰值:在机器学习中,"损失峰值"通常指的是训练过程中
损失函数
的值突然增加到非常高的水平
瓶子好亮
·
2024-02-19 14:08
10天学完OLMo
语言模型
Huber loss
一种用于回归模型的
损失函数
,和mse相比,对outliers更不敏感。当残差较小时,
损失函数
是残差的二次方;当残差较大时,
损失函数
和残差是线性关系。
poteman
·
2024-02-15 02:06
如何使用pytorch自动求梯度
构建深度学习模型的基本流程就是:搭建计算图,求得
损失函数
,然后计算
损失函数
对模型参数的导数,再利用梯度下降法等方法来更新参数。
浩波的笔记
·
2024-02-14 23:47
吴恩达机器学习—大规模机器学习
学习大数据集数据量多,模型效果肯定会比较好,但是大数据也有它自己的问题,计算复杂如果存在100000000个特征,计算量是相当大的,在进行梯度下降的时候,还要反复求
损失函数
的偏导数,这样一来计算量更大。
魏清宇
·
2024-02-14 21:14
(Ridge, Lasso) Regression
岭回归岭回归的
损失函数
MSE+L2岭回归还是多元线性回归y=wTx只不过
损失函数
MSE添加了损失项w越小越好?
王金松
·
2024-02-14 15:56
机器为什么能学习(上)
我们说机器学习算法是可行的,是指它的
损失函数
值很小。比如在回归问题里,我们的目标是让我们用更为数学化的语言表述这件事情:首先定义一下本文需要用到的数学符号我们让本质上就是要使得足够小且。
ringotc
·
2024-02-13 21:16
机器学习入门--多层感知机原理与实践
反向传播是指通过计算
损失函数
对网络参数进行梯度
Dr.Cup
·
2024-02-13 13:37
机器学习入门
机器学习
人工智能
机器学习入门--BP神经网络原理与实践
BP算法的核心思想是通过计算
损失函数
相对于网络参数的梯度,然后利用这些梯度信息来更新网络的权重和偏置,从而最小化误差。数学原理BP算法的数学原理基于链式法则计算梯度。考虑一个简单的两层神经
Dr.Cup
·
2024-02-13 13:37
机器学习入门
机器学习
神经网络
人工智能
深度学习中的前向传播和反向传播
反向传递就是计算每个参数的梯度,然后用于最小化
损失函数
。在深度学习中,"forward"通常指前向传播(forwardpropagation),也称为前馈传递。
处女座_三月
·
2024-02-13 07:56
深度学习
深度学习
人工智能
神经网络
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
net.b)总结本节我们详细介绍了如何使用Numpy实现梯度下降算法,构建并训练了一个简单的线性模型实现波士顿房价预测,可以总结出,使用神经网络建模房价预测有三个要点:构建网络,初始化参数w和b,定义预测和
损失函数
的计算方
软工菜鸡
·
2024-02-13 06:36
《零基础实践深度学习》
numpy
深度学习
人工智能
大数据
机器学习
飞桨
百度云
回归预测模型:MATLAB岭回归和Lasso回归
岭回归通过在
损失函数
中添加一个L2正则项(λ∑j=1nβj2\lambda\sum_{j=1}^{n}\beta_j^2λ∑j=1nβj2)来减小回归系数的大小,从而控制模型的复杂度和防止过拟合。
抱抱宝
·
2024-02-13 06:01
数学建模算法与应用
回归
matlab
算法
数学建模
交叉熵
损失函数
基本概念及公式
Cross-EntropyLoss1.二分类2.对于多类别分类问题,其公式可以表示为:3.公式深度挖掘解释——交叉熵
损失函数
公式中(log)的解释总结交叉熵
损失函数
(Cross-EntropyLoss)
小桥流水---人工智能
·
2024-02-12 16:03
人工智能
机器学习算法
深度学习
交叉熵
损失函数
(Cross-Entropy Loss)的基本概念与程序代码
交叉熵
损失函数
(Cross-EntropyLoss)是机器学习和深度学习中常用的
损失函数
之一,用于分类问题。
小桥流水---人工智能
·
2024-02-12 16:31
人工智能
机器学习算法
人工智能
深度学习
机器学习入门之基础概念及线性回归
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习
损失函数
与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习
StarCoder_Yue
·
2024-02-12 11:01
算法
机器学习
学习笔记
机器学习
线性回归
正则化
人工智能
算法数学
为什么深度学习模型很难找到局部最优?
而在训练过程中,我们需要制定一个
损失函数
,使训练过程中的函数值“最小”。这时候,我们可以把该
损失函数
看做一个目标函数。从优化的思路上来讲,我们尽可能地降低训练误差就是最小化这个目标函数的过程。
蔡逸超
·
2024-02-12 11:30
深度学习
深度学习
机器学习
线性代数
《零基础实践深度学习》波士顿房价预测任务1.3.3.4训练过程
《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3-CSDN博客1.3.3.4训练过程上述计算过程描述了如何构建神经网络,通过神经网络完成预测值和
损失函数
的计算。
软工菜鸡
·
2024-02-12 10:14
《零基础实践深度学习》
深度学习
人工智能
机器学习
paddle
百度
飞桨
2-2 动手学深度学习v2-
损失函数
-笔记
损失函数
,用来衡量预测值和真实值之间的区别。是机器学习里面一个非常重要的概念。
Alkali!
·
2024-02-12 03:44
深度学习/机器学习入门
深度学习
笔记
人工智能
人工智能深度学习入门指南
1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、
损失函数
、反向传播等。这些概念是深度学习的基
白猫a~
·
2024-02-11 23:00
编程
深度学习
人工智能
YOLOv5改进 | 融合改进篇 | 华为VanillaNet + BiFPN突破涨点极限
这个主干是一种注重极简主义和效率的神经网络我也将其进行了实验,其中的BiFPN不用介绍了从其发布到现在一直是比较热门的改进机制,其主要思想是通过多层级的特征金字塔和双向信息传递来提高精度,我将其融合在一起,大家可以复制过去在其基础上配合我的
损失函数
Snu77
·
2024-02-11 18:40
YOLOv5改进有效专栏
深度学习
人工智能
YOLO
目标检测
计算机视觉
华为
python
9、神经网络 三:学习与评价
目录9.1梯度检验9.2清醒检查9.3照看学习过程9.3.1
损失函数
9.3.2训练/评估精度9.3.3权重:更新率9.3.4每一层的激活/梯度分布9.4.5可视化9.4参数更新9.4.1一阶(SGD),
qxdx.org
·
2024-02-11 18:03
计算机视觉
梯度检查
清醒检查
婴儿学习过程
超参数优化
二阶方法
在CE和MSE
损失函数
中使用置信度的方法
以下是在一个半监督情景中weak_output_ul为弱扰动出来的logits,strong_output_ul为强扰动出来的logits两者尺寸都可看作[8,2,256,256]CE:weak_x_ul=self.encoder(A_ul,B_ul)weak_output_ul=self.main_decoder(weak_x_ul)weak_targets=F.softmax(weak_out
UndefindX
·
2024-02-11 14:50
深度学习
python
机器学习
GBDT--梯度提升树
目录一梯度提升树的基本思想1梯度提升树pkAdaBoost2GradientBoosting回归与分类的实现二梯度提升树的参数1迭代过程1.1初始预测结果0的设置1.2使用回归器完成分类任务1.3GBDT的8种
损失函数
吓得我泰勒都展开了
·
2024-02-11 14:40
机器学习
决策树
算法
梯度提升树系列7——深入理解GBDT的参数调优
叶子节点的最小样本数(min_samples_leaf)1.5特征选择的比例(max_features)1.6最小分裂所需的样本数(min_samples_split)1.7子采样比例(subsample)1.8
损失函数
theskylife
·
2024-02-11 14:40
数据分析
数据挖掘
人工智能
数据挖掘
机器学习
python
分类
deep learning update error loss = nan
对于分类问题,学习率太高会导致模型「顽固」地认为某些数据属于错误的类,而正确的类的概率为0(实际是浮点数下溢),这样用交叉熵就会算出无穷大的
损失函数
。
xyq_learn
·
2024-02-11 14:52
吴恩达机器学习—正则化
过拟合可能对现有数据拟合效果较好,
损失函数
值几乎为零,但是不能进行泛化时,即不适于非训练集的其他数据。如何解决过拟合问题特征变量过多造成过拟合绘制假设模型图像,但当特征变量变多时,绘制很困难。
魏清宇
·
2024-02-11 09:55
深度学习入门--参数的优化算法
假设模型参数为θ\thetaθ,
损失函数
为J(θ)J(\theta)J(θ),
损失函数
关于参数的偏导数,也就是梯度为▽θJ(θ)\triangledown_\thetaJ(\theta)▽θJ(θ),学习率为
我只钓小鱼
·
2024-02-11 03:53
深度学习
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他